Proof of Theorem divdivdivap
Step | Hyp | Ref
| Expression |
1 | | simprrl 529 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐷 ∈ ℂ) |
2 | | simprll 527 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐶 ∈ ℂ) |
3 | | simprlr 528 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐶 # 0) |
4 | | divclap 8574 |
. . . . . . 7
⊢ ((𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐷 / 𝐶) ∈ ℂ) |
5 | 1, 2, 3, 4 | syl3anc 1228 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐷 / 𝐶) ∈ ℂ) |
6 | | simpll 519 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐴 ∈ ℂ) |
7 | | simplrl 525 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐵 ∈ ℂ) |
8 | | simplrr 526 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐵 # 0) |
9 | | divclap 8574 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℂ) |
10 | 6, 7, 8, 9 | syl3anc 1228 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐴 / 𝐵) ∈ ℂ) |
11 | 5, 10 | mulcomd 7920 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐷 / 𝐶) · (𝐴 / 𝐵)) = ((𝐴 / 𝐵) · (𝐷 / 𝐶))) |
12 | | simplr 520 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐵 ∈ ℂ ∧ 𝐵 # 0)) |
13 | | simprl 521 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐶 ∈ ℂ ∧ 𝐶 # 0)) |
14 | | divmuldivap 8608 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0))) → ((𝐴 / 𝐵) · (𝐷 / 𝐶)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) |
15 | 6, 1, 12, 13, 14 | syl22anc 1229 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐵) · (𝐷 / 𝐶)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) |
16 | 11, 15 | eqtrd 2198 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐷 / 𝐶) · (𝐴 / 𝐵)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) |
17 | 16 | oveq2d 5858 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 / 𝐷) · ((𝐷 / 𝐶) · (𝐴 / 𝐵))) = ((𝐶 / 𝐷) · ((𝐴 · 𝐷) / (𝐵 · 𝐶)))) |
18 | | simprr 522 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐷 ∈ ℂ ∧ 𝐷 # 0)) |
19 | | divmuldivap 8608 |
. . . . . . 7
⊢ (((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐷 ∈ ℂ ∧ 𝐷 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0))) → ((𝐶 / 𝐷) · (𝐷 / 𝐶)) = ((𝐶 · 𝐷) / (𝐷 · 𝐶))) |
20 | 2, 1, 18, 13, 19 | syl22anc 1229 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 / 𝐷) · (𝐷 / 𝐶)) = ((𝐶 · 𝐷) / (𝐷 · 𝐶))) |
21 | 2, 1 | mulcomd 7920 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐶 · 𝐷) = (𝐷 · 𝐶)) |
22 | 21 | oveq1d 5857 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 · 𝐷) / (𝐷 · 𝐶)) = ((𝐷 · 𝐶) / (𝐷 · 𝐶))) |
23 | 1, 2 | mulcld 7919 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐷 · 𝐶) ∈ ℂ) |
24 | | simprrr 530 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐷 # 0) |
25 | 1, 2, 24, 3 | mulap0d 8555 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐷 · 𝐶) # 0) |
26 | | dividap 8597 |
. . . . . . . 8
⊢ (((𝐷 · 𝐶) ∈ ℂ ∧ (𝐷 · 𝐶) # 0) → ((𝐷 · 𝐶) / (𝐷 · 𝐶)) = 1) |
27 | 23, 25, 26 | syl2anc 409 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐷 · 𝐶) / (𝐷 · 𝐶)) = 1) |
28 | 22, 27 | eqtrd 2198 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 · 𝐷) / (𝐷 · 𝐶)) = 1) |
29 | 20, 28 | eqtrd 2198 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 / 𝐷) · (𝐷 / 𝐶)) = 1) |
30 | 29 | oveq1d 5857 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐶 / 𝐷) · (𝐷 / 𝐶)) · (𝐴 / 𝐵)) = (1 · (𝐴 / 𝐵))) |
31 | | divclap 8574 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0) → (𝐶 / 𝐷) ∈ ℂ) |
32 | 2, 1, 24, 31 | syl3anc 1228 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐶 / 𝐷) ∈ ℂ) |
33 | 32, 5, 10 | mulassd 7922 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐶 / 𝐷) · (𝐷 / 𝐶)) · (𝐴 / 𝐵)) = ((𝐶 / 𝐷) · ((𝐷 / 𝐶) · (𝐴 / 𝐵)))) |
34 | 10 | mulid2d 7917 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (1 · (𝐴 / 𝐵)) = (𝐴 / 𝐵)) |
35 | 30, 33, 34 | 3eqtr3d 2206 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 / 𝐷) · ((𝐷 / 𝐶) · (𝐴 / 𝐵))) = (𝐴 / 𝐵)) |
36 | 17, 35 | eqtr3d 2200 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 / 𝐷) · ((𝐴 · 𝐷) / (𝐵 · 𝐶))) = (𝐴 / 𝐵)) |
37 | 6, 1 | mulcld 7919 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐴 · 𝐷) ∈ ℂ) |
38 | 7, 2 | mulcld 7919 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐵 · 𝐶) ∈ ℂ) |
39 | | mulap0 8551 |
. . . . 5
⊢ (((𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐵 · 𝐶) # 0) |
40 | 39 | ad2ant2lr 502 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐵 · 𝐶) # 0) |
41 | | divclap 8574 |
. . . 4
⊢ (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ ∧ (𝐵 · 𝐶) # 0) → ((𝐴 · 𝐷) / (𝐵 · 𝐶)) ∈ ℂ) |
42 | 37, 38, 40, 41 | syl3anc 1228 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 · 𝐷) / (𝐵 · 𝐶)) ∈ ℂ) |
43 | | divap0 8580 |
. . . 4
⊢ (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 / 𝐷) # 0) |
44 | 43 | adantl 275 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐶 / 𝐷) # 0) |
45 | | divmulap 8571 |
. . 3
⊢ (((𝐴 / 𝐵) ∈ ℂ ∧ ((𝐴 · 𝐷) / (𝐵 · 𝐶)) ∈ ℂ ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) # 0)) → (((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) ↔ ((𝐶 / 𝐷) · ((𝐴 · 𝐷) / (𝐵 · 𝐶))) = (𝐴 / 𝐵))) |
46 | 10, 42, 32, 44, 45 | syl112anc 1232 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) ↔ ((𝐶 / 𝐷) · ((𝐴 · 𝐷) / (𝐵 · 𝐶))) = (𝐴 / 𝐵))) |
47 | 36, 46 | mpbird 166 |
1
⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) |