ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divdivdivap GIF version

Theorem divdivdivap 8669
Description: Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by Jim Kingdon, 25-Feb-2020.)
Assertion
Ref Expression
divdivdivap (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ((๐ด / ๐ต) / (๐ถ / ๐ท)) = ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)))

Proof of Theorem divdivdivap
StepHypRef Expression
1 simprrl 539 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ๐ท โˆˆ โ„‚)
2 simprll 537 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ๐ถ โˆˆ โ„‚)
3 simprlr 538 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ๐ถ # 0)
4 divclap 8634 . . . . . . 7 ((๐ท โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โ†’ (๐ท / ๐ถ) โˆˆ โ„‚)
51, 2, 3, 4syl3anc 1238 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (๐ท / ๐ถ) โˆˆ โ„‚)
6 simpll 527 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ๐ด โˆˆ โ„‚)
7 simplrl 535 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ๐ต โˆˆ โ„‚)
8 simplrr 536 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ๐ต # 0)
9 divclap 8634 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ต # 0) โ†’ (๐ด / ๐ต) โˆˆ โ„‚)
106, 7, 8, 9syl3anc 1238 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (๐ด / ๐ต) โˆˆ โ„‚)
115, 10mulcomd 7978 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ((๐ท / ๐ถ) ยท (๐ด / ๐ต)) = ((๐ด / ๐ต) ยท (๐ท / ๐ถ)))
12 simplr 528 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (๐ต โˆˆ โ„‚ โˆง ๐ต # 0))
13 simprl 529 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0))
14 divmuldivap 8668 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โˆง ((๐ต โˆˆ โ„‚ โˆง ๐ต # 0) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0))) โ†’ ((๐ด / ๐ต) ยท (๐ท / ๐ถ)) = ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)))
156, 1, 12, 13, 14syl22anc 1239 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ((๐ด / ๐ต) ยท (๐ท / ๐ถ)) = ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)))
1611, 15eqtrd 2210 . . . 4 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ((๐ท / ๐ถ) ยท (๐ด / ๐ต)) = ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)))
1716oveq2d 5890 . . 3 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ((๐ถ / ๐ท) ยท ((๐ท / ๐ถ) ยท (๐ด / ๐ต))) = ((๐ถ / ๐ท) ยท ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ))))
18 simprr 531 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))
19 divmuldivap 8668 . . . . . . 7 (((๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โˆง ((๐ท โˆˆ โ„‚ โˆง ๐ท # 0) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0))) โ†’ ((๐ถ / ๐ท) ยท (๐ท / ๐ถ)) = ((๐ถ ยท ๐ท) / (๐ท ยท ๐ถ)))
202, 1, 18, 13, 19syl22anc 1239 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ((๐ถ / ๐ท) ยท (๐ท / ๐ถ)) = ((๐ถ ยท ๐ท) / (๐ท ยท ๐ถ)))
212, 1mulcomd 7978 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (๐ถ ยท ๐ท) = (๐ท ยท ๐ถ))
2221oveq1d 5889 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ((๐ถ ยท ๐ท) / (๐ท ยท ๐ถ)) = ((๐ท ยท ๐ถ) / (๐ท ยท ๐ถ)))
231, 2mulcld 7977 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (๐ท ยท ๐ถ) โˆˆ โ„‚)
24 simprrr 540 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ๐ท # 0)
251, 2, 24, 3mulap0d 8614 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (๐ท ยท ๐ถ) # 0)
26 dividap 8657 . . . . . . . 8 (((๐ท ยท ๐ถ) โˆˆ โ„‚ โˆง (๐ท ยท ๐ถ) # 0) โ†’ ((๐ท ยท ๐ถ) / (๐ท ยท ๐ถ)) = 1)
2723, 25, 26syl2anc 411 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ((๐ท ยท ๐ถ) / (๐ท ยท ๐ถ)) = 1)
2822, 27eqtrd 2210 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ((๐ถ ยท ๐ท) / (๐ท ยท ๐ถ)) = 1)
2920, 28eqtrd 2210 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ((๐ถ / ๐ท) ยท (๐ท / ๐ถ)) = 1)
3029oveq1d 5889 . . . 4 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (((๐ถ / ๐ท) ยท (๐ท / ๐ถ)) ยท (๐ด / ๐ต)) = (1 ยท (๐ด / ๐ต)))
31 divclap 8634 . . . . . 6 ((๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚ โˆง ๐ท # 0) โ†’ (๐ถ / ๐ท) โˆˆ โ„‚)
322, 1, 24, 31syl3anc 1238 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (๐ถ / ๐ท) โˆˆ โ„‚)
3332, 5, 10mulassd 7980 . . . 4 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (((๐ถ / ๐ท) ยท (๐ท / ๐ถ)) ยท (๐ด / ๐ต)) = ((๐ถ / ๐ท) ยท ((๐ท / ๐ถ) ยท (๐ด / ๐ต))))
3410mulid2d 7975 . . . 4 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (1 ยท (๐ด / ๐ต)) = (๐ด / ๐ต))
3530, 33, 343eqtr3d 2218 . . 3 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ((๐ถ / ๐ท) ยท ((๐ท / ๐ถ) ยท (๐ด / ๐ต))) = (๐ด / ๐ต))
3617, 35eqtr3d 2212 . 2 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ((๐ถ / ๐ท) ยท ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ))) = (๐ด / ๐ต))
376, 1mulcld 7977 . . . 4 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (๐ด ยท ๐ท) โˆˆ โ„‚)
387, 2mulcld 7977 . . . 4 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (๐ต ยท ๐ถ) โˆˆ โ„‚)
39 mulap0 8610 . . . . 5 (((๐ต โˆˆ โ„‚ โˆง ๐ต # 0) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0)) โ†’ (๐ต ยท ๐ถ) # 0)
4039ad2ant2lr 510 . . . 4 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (๐ต ยท ๐ถ) # 0)
41 divclap 8634 . . . 4 (((๐ด ยท ๐ท) โˆˆ โ„‚ โˆง (๐ต ยท ๐ถ) โˆˆ โ„‚ โˆง (๐ต ยท ๐ถ) # 0) โ†’ ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)) โˆˆ โ„‚)
4237, 38, 40, 41syl3anc 1238 . . 3 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)) โˆˆ โ„‚)
43 divap0 8640 . . . 4 (((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0)) โ†’ (๐ถ / ๐ท) # 0)
4443adantl 277 . . 3 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (๐ถ / ๐ท) # 0)
45 divmulap 8631 . . 3 (((๐ด / ๐ต) โˆˆ โ„‚ โˆง ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)) โˆˆ โ„‚ โˆง ((๐ถ / ๐ท) โˆˆ โ„‚ โˆง (๐ถ / ๐ท) # 0)) โ†’ (((๐ด / ๐ต) / (๐ถ / ๐ท)) = ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)) โ†” ((๐ถ / ๐ท) ยท ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ))) = (๐ด / ๐ต)))
4610, 42, 32, 44, 45syl112anc 1242 . 2 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ (((๐ด / ๐ต) / (๐ถ / ๐ท)) = ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)) โ†” ((๐ถ / ๐ท) ยท ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ))) = (๐ด / ๐ต)))
4736, 46mpbird 167 1 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต # 0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ((๐ด / ๐ต) / (๐ถ / ๐ท)) = ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โ†” wb 105   = wceq 1353   โˆˆ wcel 2148   class class class wbr 4003  (class class class)co 5874  โ„‚cc 7808  0cc0 7810  1c1 7811   ยท cmul 7815   # cap 8537   / cdiv 8628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-id 4293  df-po 4296  df-iso 4297  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629
This theorem is referenced by:  recdivap  8674  divcanap7  8677  divdivap1  8679  divdivap2  8680  divdivdivapi  8731  qreccl  9641  pcadd  12338
  Copyright terms: Public domain W3C validator