ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltleadd GIF version

Theorem ltleadd 8215
Description: Adding both sides of two orderings. (Contributed by NM, 23-Dec-2007.)
Assertion
Ref Expression
ltleadd (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶𝐵𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷)))

Proof of Theorem ltleadd
StepHypRef Expression
1 ltadd1 8198 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐶 ↔ (𝐴 + 𝐵) < (𝐶 + 𝐵)))
213com23 1187 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ (𝐴 + 𝐵) < (𝐶 + 𝐵)))
323expa 1181 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ (𝐴 + 𝐵) < (𝐶 + 𝐵)))
43adantrr 470 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 < 𝐶 ↔ (𝐴 + 𝐵) < (𝐶 + 𝐵)))
5 leadd2 8200 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)))
653com23 1187 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)))
763expb 1182 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)))
87adantll 467 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)))
94, 8anbi12d 464 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶𝐵𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐵) ∧ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷))))
10 readdcl 7753 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
1110adantr 274 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 + 𝐵) ∈ ℝ)
12 readdcl 7753 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ)
1312ancoms 266 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ)
1413ad2ant2lr 501 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 + 𝐵) ∈ ℝ)
15 readdcl 7753 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 + 𝐷) ∈ ℝ)
1615adantl 275 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 + 𝐷) ∈ ℝ)
17 ltletr 7860 . . 3 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐷) ∈ ℝ) → (((𝐴 + 𝐵) < (𝐶 + 𝐵) ∧ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)) → (𝐴 + 𝐵) < (𝐶 + 𝐷)))
1811, 14, 16, 17syl3anc 1216 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴 + 𝐵) < (𝐶 + 𝐵) ∧ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)) → (𝐴 + 𝐵) < (𝐶 + 𝐷)))
199, 18sylbid 149 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶𝐵𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1480   class class class wbr 3929  (class class class)co 5774  cr 7626   + caddc 7630   < clt 7807  cle 7808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-i2m1 7732  ax-0id 7735  ax-rnegex 7736  ax-pre-ltwlin 7740  ax-pre-ltadd 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-iota 5088  df-fv 5131  df-ov 5777  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813
This theorem is referenced by:  leltadd  8216  addgtge0  8219  ltleaddd  8334
  Copyright terms: Public domain W3C validator