ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptisr GIF version

Theorem aptisr 7874
Description: Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
aptisr ((𝐴R𝐵R ∧ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)) → 𝐴 = 𝐵)

Proof of Theorem aptisr
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7822 . . 3 R = ((P × P) / ~R )
2 breq1 4046 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R [⟨𝑧, 𝑤⟩] ~R ))
3 breq2 4047 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ [⟨𝑧, 𝑤⟩] ~R <R 𝐴))
42, 3orbi12d 794 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)))
54notbid 668 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)))
6 eqeq1 2211 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R𝐴 = [⟨𝑧, 𝑤⟩] ~R ))
75, 6imbi12d 234 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ) ↔ (¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) → 𝐴 = [⟨𝑧, 𝑤⟩] ~R )))
8 breq2 4047 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R 𝐵))
9 breq1 4046 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ([⟨𝑧, 𝑤⟩] ~R <R 𝐴𝐵 <R 𝐴))
108, 9orbi12d 794 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) ↔ (𝐴 <R 𝐵𝐵 <R 𝐴)))
1110notbid 668 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) ↔ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)))
12 eqeq2 2214 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 = [⟨𝑧, 𝑤⟩] ~R𝐴 = 𝐵))
1311, 12imbi12d 234 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) → 𝐴 = [⟨𝑧, 𝑤⟩] ~R ) ↔ (¬ (𝐴 <R 𝐵𝐵 <R 𝐴) → 𝐴 = 𝐵)))
14 addcomprg 7673 . . . . . . . . 9 ((𝑦P𝑧P) → (𝑦 +P 𝑧) = (𝑧 +P 𝑦))
1514ad2ant2lr 510 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑧) = (𝑧 +P 𝑦))
16 addcomprg 7673 . . . . . . . . 9 ((𝑥P𝑤P) → (𝑥 +P 𝑤) = (𝑤 +P 𝑥))
1716ad2ant2rl 511 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑤) = (𝑤 +P 𝑥))
1815, 17breq12d 4056 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦 +P 𝑧)<P (𝑥 +P 𝑤) ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
1918orbi2d 791 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) ↔ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
2019notbid 668 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) ↔ ¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
21 addclpr 7632 . . . . . . 7 ((𝑥P𝑤P) → (𝑥 +P 𝑤) ∈ P)
2221ad2ant2rl 511 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑤) ∈ P)
23 addclpr 7632 . . . . . . 7 ((𝑦P𝑧P) → (𝑦 +P 𝑧) ∈ P)
2423ad2ant2lr 510 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑧) ∈ P)
25 aptipr 7736 . . . . . . 7 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P ∧ ¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧))
26253expia 1207 . . . . . 6 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
2722, 24, 26syl2anc 411 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
2820, 27sylbird 170 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
29 ltsrprg 7842 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
30 ltsrprg 7842 . . . . . . 7 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
3130ancoms 268 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
3229, 31orbi12d 794 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
3332notbid 668 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
34 enreceq 7831 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
3528, 33, 343imtr4d 203 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ))
361, 7, 13, 352ecoptocl 6700 . 2 ((𝐴R𝐵R) → (¬ (𝐴 <R 𝐵𝐵 <R 𝐴) → 𝐴 = 𝐵))
37363impia 1202 1 ((𝐴R𝐵R ∧ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1372  wcel 2175  cop 3635   class class class wbr 4043  (class class class)co 5934  [cec 6608  Pcnp 7386   +P cpp 7388  <P cltp 7390   ~R cer 7391  Rcnr 7392   <R cltr 7398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-2o 6493  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448  df-enq0 7519  df-nq0 7520  df-0nq0 7521  df-plq0 7522  df-mq0 7523  df-inp 7561  df-iplp 7563  df-iltp 7565  df-enr 7821  df-nr 7822  df-ltr 7825
This theorem is referenced by:  axpre-apti  7980
  Copyright terms: Public domain W3C validator