ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptisr GIF version

Theorem aptisr 7741
Description: Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
aptisr ((𝐴R𝐵R ∧ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)) → 𝐴 = 𝐵)

Proof of Theorem aptisr
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7689 . . 3 R = ((P × P) / ~R )
2 breq1 3992 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R [⟨𝑧, 𝑤⟩] ~R ))
3 breq2 3993 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ [⟨𝑧, 𝑤⟩] ~R <R 𝐴))
42, 3orbi12d 788 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)))
54notbid 662 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)))
6 eqeq1 2177 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R𝐴 = [⟨𝑧, 𝑤⟩] ~R ))
75, 6imbi12d 233 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ) ↔ (¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) → 𝐴 = [⟨𝑧, 𝑤⟩] ~R )))
8 breq2 3993 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R 𝐵))
9 breq1 3992 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ([⟨𝑧, 𝑤⟩] ~R <R 𝐴𝐵 <R 𝐴))
108, 9orbi12d 788 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) ↔ (𝐴 <R 𝐵𝐵 <R 𝐴)))
1110notbid 662 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) ↔ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)))
12 eqeq2 2180 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 = [⟨𝑧, 𝑤⟩] ~R𝐴 = 𝐵))
1311, 12imbi12d 233 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) → 𝐴 = [⟨𝑧, 𝑤⟩] ~R ) ↔ (¬ (𝐴 <R 𝐵𝐵 <R 𝐴) → 𝐴 = 𝐵)))
14 addcomprg 7540 . . . . . . . . 9 ((𝑦P𝑧P) → (𝑦 +P 𝑧) = (𝑧 +P 𝑦))
1514ad2ant2lr 507 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑧) = (𝑧 +P 𝑦))
16 addcomprg 7540 . . . . . . . . 9 ((𝑥P𝑤P) → (𝑥 +P 𝑤) = (𝑤 +P 𝑥))
1716ad2ant2rl 508 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑤) = (𝑤 +P 𝑥))
1815, 17breq12d 4002 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦 +P 𝑧)<P (𝑥 +P 𝑤) ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
1918orbi2d 785 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) ↔ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
2019notbid 662 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) ↔ ¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
21 addclpr 7499 . . . . . . 7 ((𝑥P𝑤P) → (𝑥 +P 𝑤) ∈ P)
2221ad2ant2rl 508 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑤) ∈ P)
23 addclpr 7499 . . . . . . 7 ((𝑦P𝑧P) → (𝑦 +P 𝑧) ∈ P)
2423ad2ant2lr 507 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑧) ∈ P)
25 aptipr 7603 . . . . . . 7 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P ∧ ¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧))
26253expia 1200 . . . . . 6 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
2722, 24, 26syl2anc 409 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
2820, 27sylbird 169 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
29 ltsrprg 7709 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
30 ltsrprg 7709 . . . . . . 7 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
3130ancoms 266 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
3229, 31orbi12d 788 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
3332notbid 662 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
34 enreceq 7698 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
3528, 33, 343imtr4d 202 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ))
361, 7, 13, 352ecoptocl 6601 . 2 ((𝐴R𝐵R) → (¬ (𝐴 <R 𝐵𝐵 <R 𝐴) → 𝐴 = 𝐵))
37363impia 1195 1 ((𝐴R𝐵R ∧ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  cop 3586   class class class wbr 3989  (class class class)co 5853  [cec 6511  Pcnp 7253   +P cpp 7255  <P cltp 7257   ~R cer 7258  Rcnr 7259   <R cltr 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-iltp 7432  df-enr 7688  df-nr 7689  df-ltr 7692
This theorem is referenced by:  axpre-apti  7847
  Copyright terms: Public domain W3C validator