ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptisr GIF version

Theorem aptisr 7912
Description: Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
aptisr ((𝐴R𝐵R ∧ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)) → 𝐴 = 𝐵)

Proof of Theorem aptisr
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7860 . . 3 R = ((P × P) / ~R )
2 breq1 4054 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R [⟨𝑧, 𝑤⟩] ~R ))
3 breq2 4055 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ [⟨𝑧, 𝑤⟩] ~R <R 𝐴))
42, 3orbi12d 795 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)))
54notbid 669 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)))
6 eqeq1 2213 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R𝐴 = [⟨𝑧, 𝑤⟩] ~R ))
75, 6imbi12d 234 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ) ↔ (¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) → 𝐴 = [⟨𝑧, 𝑤⟩] ~R )))
8 breq2 4055 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R 𝐵))
9 breq1 4054 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ([⟨𝑧, 𝑤⟩] ~R <R 𝐴𝐵 <R 𝐴))
108, 9orbi12d 795 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) ↔ (𝐴 <R 𝐵𝐵 <R 𝐴)))
1110notbid 669 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) ↔ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)))
12 eqeq2 2216 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 = [⟨𝑧, 𝑤⟩] ~R𝐴 = 𝐵))
1311, 12imbi12d 234 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) → 𝐴 = [⟨𝑧, 𝑤⟩] ~R ) ↔ (¬ (𝐴 <R 𝐵𝐵 <R 𝐴) → 𝐴 = 𝐵)))
14 addcomprg 7711 . . . . . . . . 9 ((𝑦P𝑧P) → (𝑦 +P 𝑧) = (𝑧 +P 𝑦))
1514ad2ant2lr 510 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑧) = (𝑧 +P 𝑦))
16 addcomprg 7711 . . . . . . . . 9 ((𝑥P𝑤P) → (𝑥 +P 𝑤) = (𝑤 +P 𝑥))
1716ad2ant2rl 511 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑤) = (𝑤 +P 𝑥))
1815, 17breq12d 4064 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦 +P 𝑧)<P (𝑥 +P 𝑤) ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
1918orbi2d 792 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) ↔ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
2019notbid 669 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) ↔ ¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
21 addclpr 7670 . . . . . . 7 ((𝑥P𝑤P) → (𝑥 +P 𝑤) ∈ P)
2221ad2ant2rl 511 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑤) ∈ P)
23 addclpr 7670 . . . . . . 7 ((𝑦P𝑧P) → (𝑦 +P 𝑧) ∈ P)
2423ad2ant2lr 510 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑧) ∈ P)
25 aptipr 7774 . . . . . . 7 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P ∧ ¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧))
26253expia 1208 . . . . . 6 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
2722, 24, 26syl2anc 411 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
2820, 27sylbird 170 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
29 ltsrprg 7880 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
30 ltsrprg 7880 . . . . . . 7 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
3130ancoms 268 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
3229, 31orbi12d 795 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
3332notbid 669 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
34 enreceq 7869 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
3528, 33, 343imtr4d 203 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ))
361, 7, 13, 352ecoptocl 6723 . 2 ((𝐴R𝐵R) → (¬ (𝐴 <R 𝐵𝐵 <R 𝐴) → 𝐴 = 𝐵))
37363impia 1203 1 ((𝐴R𝐵R ∧ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2177  cop 3641   class class class wbr 4051  (class class class)co 5957  [cec 6631  Pcnp 7424   +P cpp 7426  <P cltp 7428   ~R cer 7429  Rcnr 7430   <R cltr 7436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-eprel 4344  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-1o 6515  df-2o 6516  df-oadd 6519  df-omul 6520  df-er 6633  df-ec 6635  df-qs 6639  df-ni 7437  df-pli 7438  df-mi 7439  df-lti 7440  df-plpq 7477  df-mpq 7478  df-enq 7480  df-nqqs 7481  df-plqqs 7482  df-mqqs 7483  df-1nqqs 7484  df-rq 7485  df-ltnqqs 7486  df-enq0 7557  df-nq0 7558  df-0nq0 7559  df-plq0 7560  df-mq0 7561  df-inp 7599  df-iplp 7601  df-iltp 7603  df-enr 7859  df-nr 7860  df-ltr 7863
This theorem is referenced by:  axpre-apti  8018
  Copyright terms: Public domain W3C validator