| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-nr 7794 | 
. . 3
⊢
R = ((P × P) /
~R ) | 
| 2 |   | breq1 4036 | 
. . . . . 6
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ↔
𝐴
<R [〈𝑧, 𝑤〉] ~R
)) | 
| 3 |   | breq2 4037 | 
. . . . . 6
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ([〈𝑧, 𝑤〉] ~R
<R [〈𝑥, 𝑦〉] ~R ↔
[〈𝑧, 𝑤〉]
~R <R 𝐴)) | 
| 4 | 2, 3 | orbi12d 794 | 
. . . . 5
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R [〈𝑥, 𝑦〉] ~R ) ↔
(𝐴
<R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R 𝐴))) | 
| 5 | 4 | notbid 668 | 
. . . 4
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (¬ ([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R [〈𝑥, 𝑦〉] ~R ) ↔
¬ (𝐴
<R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R 𝐴))) | 
| 6 |   | eqeq1 2203 | 
. . . 4
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R =
[〈𝑧, 𝑤〉]
~R ↔ 𝐴 = [〈𝑧, 𝑤〉] ~R
)) | 
| 7 | 5, 6 | imbi12d 234 | 
. . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ((¬ ([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R [〈𝑥, 𝑦〉] ~R ) →
[〈𝑥, 𝑦〉]
~R = [〈𝑧, 𝑤〉] ~R ) ↔
(¬ (𝐴
<R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R 𝐴) → 𝐴 = [〈𝑧, 𝑤〉] ~R
))) | 
| 8 |   | breq2 4037 | 
. . . . . 6
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → (𝐴 <R [〈𝑧, 𝑤〉] ~R ↔
𝐴
<R 𝐵)) | 
| 9 |   | breq1 4036 | 
. . . . . 6
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → ([〈𝑧, 𝑤〉] ~R
<R 𝐴 ↔ 𝐵 <R 𝐴)) | 
| 10 | 8, 9 | orbi12d 794 | 
. . . . 5
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → ((𝐴 <R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R 𝐴) ↔ (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴))) | 
| 11 | 10 | notbid 668 | 
. . . 4
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → (¬ (𝐴 <R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R 𝐴) ↔ ¬ (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴))) | 
| 12 |   | eqeq2 2206 | 
. . . 4
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → (𝐴 = [〈𝑧, 𝑤〉] ~R ↔
𝐴 = 𝐵)) | 
| 13 | 11, 12 | imbi12d 234 | 
. . 3
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → ((¬ (𝐴 <R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R 𝐴) → 𝐴 = [〈𝑧, 𝑤〉] ~R ) ↔
(¬ (𝐴
<R 𝐵 ∨ 𝐵 <R 𝐴) → 𝐴 = 𝐵))) | 
| 14 |   | addcomprg 7645 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (𝑦
+P 𝑧) = (𝑧 +P 𝑦)) | 
| 15 | 14 | ad2ant2lr 510 | 
. . . . . . . 8
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (𝑦 +P 𝑧) = (𝑧 +P 𝑦)) | 
| 16 |   | addcomprg 7645 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ P ∧
𝑤 ∈ P)
→ (𝑥
+P 𝑤) = (𝑤 +P 𝑥)) | 
| 17 | 16 | ad2ant2rl 511 | 
. . . . . . . 8
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (𝑥 +P 𝑤) = (𝑤 +P 𝑥)) | 
| 18 | 15, 17 | breq12d 4046 | 
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ((𝑦 +P 𝑧)<P
(𝑥
+P 𝑤) ↔ (𝑧 +P 𝑦)<P
(𝑤
+P 𝑥))) | 
| 19 | 18 | orbi2d 791 | 
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (((𝑥 +P 𝑤)<P
(𝑦
+P 𝑧) ∨ (𝑦 +P 𝑧)<P
(𝑥
+P 𝑤)) ↔ ((𝑥 +P 𝑤)<P
(𝑦
+P 𝑧) ∨ (𝑧 +P 𝑦)<P
(𝑤
+P 𝑥)))) | 
| 20 | 19 | notbid 668 | 
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (¬ ((𝑥 +P 𝑤)<P
(𝑦
+P 𝑧) ∨ (𝑦 +P 𝑧)<P
(𝑥
+P 𝑤)) ↔ ¬ ((𝑥 +P 𝑤)<P
(𝑦
+P 𝑧) ∨ (𝑧 +P 𝑦)<P
(𝑤
+P 𝑥)))) | 
| 21 |   | addclpr 7604 | 
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑤 ∈ P)
→ (𝑥
+P 𝑤) ∈ P) | 
| 22 | 21 | ad2ant2rl 511 | 
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (𝑥 +P 𝑤) ∈
P) | 
| 23 |   | addclpr 7604 | 
. . . . . . 7
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (𝑦
+P 𝑧) ∈ P) | 
| 24 | 23 | ad2ant2lr 510 | 
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (𝑦 +P 𝑧) ∈
P) | 
| 25 |   | aptipr 7708 | 
. . . . . . 7
⊢ (((𝑥 +P
𝑤) ∈ P
∧ (𝑦
+P 𝑧) ∈ P ∧ ¬ ((𝑥 +P
𝑤)<P (𝑦 +P
𝑧) ∨ (𝑦 +P 𝑧)<P
(𝑥
+P 𝑤))) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)) | 
| 26 | 25 | 3expia 1207 | 
. . . . . 6
⊢ (((𝑥 +P
𝑤) ∈ P
∧ (𝑦
+P 𝑧) ∈ P) → (¬
((𝑥
+P 𝑤)<P (𝑦 +P
𝑧) ∨ (𝑦 +P 𝑧)<P
(𝑥
+P 𝑤)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧))) | 
| 27 | 22, 24, 26 | syl2anc 411 | 
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (¬ ((𝑥 +P 𝑤)<P
(𝑦
+P 𝑧) ∨ (𝑦 +P 𝑧)<P
(𝑥
+P 𝑤)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧))) | 
| 28 | 20, 27 | sylbird 170 | 
. . . 4
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (¬ ((𝑥 +P 𝑤)<P
(𝑦
+P 𝑧) ∨ (𝑧 +P 𝑦)<P
(𝑤
+P 𝑥)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧))) | 
| 29 |   | ltsrprg 7814 | 
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ↔
(𝑥
+P 𝑤)<P (𝑦 +P
𝑧))) | 
| 30 |   | ltsrprg 7814 | 
. . . . . . 7
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P)) → ([〈𝑧, 𝑤〉] ~R
<R [〈𝑥, 𝑦〉] ~R ↔
(𝑧
+P 𝑦)<P (𝑤 +P
𝑥))) | 
| 31 | 30 | ancoms 268 | 
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ([〈𝑧, 𝑤〉] ~R
<R [〈𝑥, 𝑦〉] ~R ↔
(𝑧
+P 𝑦)<P (𝑤 +P
𝑥))) | 
| 32 | 29, 31 | orbi12d 794 | 
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R [〈𝑥, 𝑦〉] ~R ) ↔
((𝑥
+P 𝑤)<P (𝑦 +P
𝑧) ∨ (𝑧 +P 𝑦)<P
(𝑤
+P 𝑥)))) | 
| 33 | 32 | notbid 668 | 
. . . 4
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (¬ ([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R [〈𝑥, 𝑦〉] ~R ) ↔
¬ ((𝑥
+P 𝑤)<P (𝑦 +P
𝑧) ∨ (𝑧 +P 𝑦)<P
(𝑤
+P 𝑥)))) | 
| 34 |   | enreceq 7803 | 
. . . 4
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ([〈𝑥, 𝑦〉] ~R =
[〈𝑧, 𝑤〉]
~R ↔ (𝑥 +P 𝑤) = (𝑦 +P 𝑧))) | 
| 35 | 28, 33, 34 | 3imtr4d 203 | 
. . 3
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (¬ ([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ∨
[〈𝑧, 𝑤〉]
~R <R [〈𝑥, 𝑦〉] ~R ) →
[〈𝑥, 𝑦〉]
~R = [〈𝑧, 𝑤〉] ~R
)) | 
| 36 | 1, 7, 13, 35 | 2ecoptocl 6682 | 
. 2
⊢ ((𝐴 ∈ R ∧
𝐵 ∈ R)
→ (¬ (𝐴
<R 𝐵 ∨ 𝐵 <R 𝐴) → 𝐴 = 𝐵)) | 
| 37 | 36 | 3impia 1202 | 
1
⊢ ((𝐴 ∈ R ∧
𝐵 ∈ R
∧ ¬ (𝐴
<R 𝐵 ∨ 𝐵 <R 𝐴)) → 𝐴 = 𝐵) |