ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptisr GIF version

Theorem aptisr 7611
Description: Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
aptisr ((𝐴R𝐵R ∧ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)) → 𝐴 = 𝐵)

Proof of Theorem aptisr
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7559 . . 3 R = ((P × P) / ~R )
2 breq1 3940 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R [⟨𝑧, 𝑤⟩] ~R ))
3 breq2 3941 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ [⟨𝑧, 𝑤⟩] ~R <R 𝐴))
42, 3orbi12d 783 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)))
54notbid 657 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)))
6 eqeq1 2147 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R𝐴 = [⟨𝑧, 𝑤⟩] ~R ))
75, 6imbi12d 233 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ) ↔ (¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) → 𝐴 = [⟨𝑧, 𝑤⟩] ~R )))
8 breq2 3941 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R 𝐵))
9 breq1 3940 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ([⟨𝑧, 𝑤⟩] ~R <R 𝐴𝐵 <R 𝐴))
108, 9orbi12d 783 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) ↔ (𝐴 <R 𝐵𝐵 <R 𝐴)))
1110notbid 657 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) ↔ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)))
12 eqeq2 2150 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 = [⟨𝑧, 𝑤⟩] ~R𝐴 = 𝐵))
1311, 12imbi12d 233 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) → 𝐴 = [⟨𝑧, 𝑤⟩] ~R ) ↔ (¬ (𝐴 <R 𝐵𝐵 <R 𝐴) → 𝐴 = 𝐵)))
14 addcomprg 7410 . . . . . . . . 9 ((𝑦P𝑧P) → (𝑦 +P 𝑧) = (𝑧 +P 𝑦))
1514ad2ant2lr 502 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑧) = (𝑧 +P 𝑦))
16 addcomprg 7410 . . . . . . . . 9 ((𝑥P𝑤P) → (𝑥 +P 𝑤) = (𝑤 +P 𝑥))
1716ad2ant2rl 503 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑤) = (𝑤 +P 𝑥))
1815, 17breq12d 3950 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦 +P 𝑧)<P (𝑥 +P 𝑤) ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
1918orbi2d 780 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) ↔ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
2019notbid 657 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) ↔ ¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
21 addclpr 7369 . . . . . . 7 ((𝑥P𝑤P) → (𝑥 +P 𝑤) ∈ P)
2221ad2ant2rl 503 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑤) ∈ P)
23 addclpr 7369 . . . . . . 7 ((𝑦P𝑧P) → (𝑦 +P 𝑧) ∈ P)
2423ad2ant2lr 502 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑧) ∈ P)
25 aptipr 7473 . . . . . . 7 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P ∧ ¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧))
26253expia 1184 . . . . . 6 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
2722, 24, 26syl2anc 409 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
2820, 27sylbird 169 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
29 ltsrprg 7579 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
30 ltsrprg 7579 . . . . . . 7 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
3130ancoms 266 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
3229, 31orbi12d 783 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
3332notbid 657 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
34 enreceq 7568 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
3528, 33, 343imtr4d 202 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ))
361, 7, 13, 352ecoptocl 6525 . 2 ((𝐴R𝐵R) → (¬ (𝐴 <R 𝐵𝐵 <R 𝐴) → 𝐴 = 𝐵))
37363impia 1179 1 ((𝐴R𝐵R ∧ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 963   = wceq 1332  wcel 1481  cop 3535   class class class wbr 3937  (class class class)co 5782  [cec 6435  Pcnp 7123   +P cpp 7125  <P cltp 7127   ~R cer 7128  Rcnr 7129   <R cltr 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302  df-enr 7558  df-nr 7559  df-ltr 7562
This theorem is referenced by:  axpre-apti  7717
  Copyright terms: Public domain W3C validator