ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptisr GIF version

Theorem aptisr 7777
Description: Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
aptisr ((𝐴R𝐵R ∧ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)) → 𝐴 = 𝐵)

Proof of Theorem aptisr
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7725 . . 3 R = ((P × P) / ~R )
2 breq1 4006 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R [⟨𝑧, 𝑤⟩] ~R ))
3 breq2 4007 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ [⟨𝑧, 𝑤⟩] ~R <R 𝐴))
42, 3orbi12d 793 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)))
54notbid 667 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴)))
6 eqeq1 2184 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R𝐴 = [⟨𝑧, 𝑤⟩] ~R ))
75, 6imbi12d 234 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ) ↔ (¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) → 𝐴 = [⟨𝑧, 𝑤⟩] ~R )))
8 breq2 4007 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R 𝐵))
9 breq1 4006 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ([⟨𝑧, 𝑤⟩] ~R <R 𝐴𝐵 <R 𝐴))
108, 9orbi12d 793 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) ↔ (𝐴 <R 𝐵𝐵 <R 𝐴)))
1110notbid 667 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) ↔ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)))
12 eqeq2 2187 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 = [⟨𝑧, 𝑤⟩] ~R𝐴 = 𝐵))
1311, 12imbi12d 234 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((¬ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R 𝐴) → 𝐴 = [⟨𝑧, 𝑤⟩] ~R ) ↔ (¬ (𝐴 <R 𝐵𝐵 <R 𝐴) → 𝐴 = 𝐵)))
14 addcomprg 7576 . . . . . . . . 9 ((𝑦P𝑧P) → (𝑦 +P 𝑧) = (𝑧 +P 𝑦))
1514ad2ant2lr 510 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑧) = (𝑧 +P 𝑦))
16 addcomprg 7576 . . . . . . . . 9 ((𝑥P𝑤P) → (𝑥 +P 𝑤) = (𝑤 +P 𝑥))
1716ad2ant2rl 511 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑤) = (𝑤 +P 𝑥))
1815, 17breq12d 4016 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦 +P 𝑧)<P (𝑥 +P 𝑤) ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
1918orbi2d 790 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) ↔ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
2019notbid 667 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) ↔ ¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
21 addclpr 7535 . . . . . . 7 ((𝑥P𝑤P) → (𝑥 +P 𝑤) ∈ P)
2221ad2ant2rl 511 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑤) ∈ P)
23 addclpr 7535 . . . . . . 7 ((𝑦P𝑧P) → (𝑦 +P 𝑧) ∈ P)
2423ad2ant2lr 510 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑧) ∈ P)
25 aptipr 7639 . . . . . . 7 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P ∧ ¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤))) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧))
26253expia 1205 . . . . . 6 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
2722, 24, 26syl2anc 411 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑦 +P 𝑧)<P (𝑥 +P 𝑤)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
2820, 27sylbird 170 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)) → (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
29 ltsrprg 7745 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
30 ltsrprg 7745 . . . . . . 7 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
3130ancoms 268 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥)))
3229, 31orbi12d 793 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
3332notbid 667 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) ↔ ¬ ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ∨ (𝑧 +P 𝑦)<P (𝑤 +P 𝑥))))
34 enreceq 7734 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤) = (𝑦 +P 𝑧)))
3528, 33, 343imtr4d 203 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (¬ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∨ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R = [⟨𝑧, 𝑤⟩] ~R ))
361, 7, 13, 352ecoptocl 6622 . 2 ((𝐴R𝐵R) → (¬ (𝐴 <R 𝐵𝐵 <R 𝐴) → 𝐴 = 𝐵))
37363impia 1200 1 ((𝐴R𝐵R ∧ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148  cop 3595   class class class wbr 4003  (class class class)co 5874  [cec 6532  Pcnp 7289   +P cpp 7291  <P cltp 7293   ~R cer 7294  Rcnr 7295   <R cltr 7301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-eprel 4289  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-1o 6416  df-2o 6417  df-oadd 6420  df-omul 6421  df-er 6534  df-ec 6536  df-qs 6540  df-ni 7302  df-pli 7303  df-mi 7304  df-lti 7305  df-plpq 7342  df-mpq 7343  df-enq 7345  df-nqqs 7346  df-plqqs 7347  df-mqqs 7348  df-1nqqs 7349  df-rq 7350  df-ltnqqs 7351  df-enq0 7422  df-nq0 7423  df-0nq0 7424  df-plq0 7425  df-mq0 7426  df-inp 7464  df-iplp 7466  df-iltp 7468  df-enr 7724  df-nr 7725  df-ltr 7728
This theorem is referenced by:  axpre-apti  7883
  Copyright terms: Public domain W3C validator