![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcomsrg | GIF version |
Description: Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
Ref | Expression |
---|---|
mulcomsrg | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 7757 | . 2 ⊢ R = ((P × P) / ~R ) | |
2 | mulsrpr 7776 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) = [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ) | |
3 | mulsrpr 7776 | . 2 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) → ([〈𝑧, 𝑤〉] ~R ·R [〈𝑥, 𝑦〉] ~R ) = [〈((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦)), ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))〉] ~R ) | |
4 | mulcomprg 7610 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 ·P 𝑧) = (𝑧 ·P 𝑥)) | |
5 | 4 | ad2ant2r 509 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑥 ·P 𝑧) = (𝑧 ·P 𝑥)) |
6 | mulcomprg 7610 | . . . 4 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 ·P 𝑤) = (𝑤 ·P 𝑦)) | |
7 | 6 | ad2ant2l 508 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑦 ·P 𝑤) = (𝑤 ·P 𝑦)) |
8 | 5, 7 | oveq12d 5915 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = ((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦))) |
9 | mulcomprg 7610 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑤 ∈ P) → (𝑥 ·P 𝑤) = (𝑤 ·P 𝑥)) | |
10 | 9 | ad2ant2rl 511 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑥 ·P 𝑤) = (𝑤 ·P 𝑥)) |
11 | mulcomprg 7610 | . . . . 5 ⊢ ((𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦 ·P 𝑧) = (𝑧 ·P 𝑦)) | |
12 | 11 | ad2ant2lr 510 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑦 ·P 𝑧) = (𝑧 ·P 𝑦)) |
13 | 10, 12 | oveq12d 5915 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦))) |
14 | mulclpr 7602 | . . . . . 6 ⊢ ((𝑤 ∈ P ∧ 𝑥 ∈ P) → (𝑤 ·P 𝑥) ∈ P) | |
15 | 14 | ancoms 268 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑤 ∈ P) → (𝑤 ·P 𝑥) ∈ P) |
16 | 15 | ad2ant2rl 511 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑤 ·P 𝑥) ∈ P) |
17 | mulclpr 7602 | . . . . . 6 ⊢ ((𝑧 ∈ P ∧ 𝑦 ∈ P) → (𝑧 ·P 𝑦) ∈ P) | |
18 | 17 | ancoms 268 | . . . . 5 ⊢ ((𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑧 ·P 𝑦) ∈ P) |
19 | 18 | ad2ant2lr 510 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑧 ·P 𝑦) ∈ P) |
20 | addcomprg 7608 | . . . 4 ⊢ (((𝑤 ·P 𝑥) ∈ P ∧ (𝑧 ·P 𝑦) ∈ P) → ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))) | |
21 | 16, 19, 20 | syl2anc 411 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))) |
22 | 13, 21 | eqtrd 2222 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))) |
23 | 1, 2, 3, 8, 22 | ecovicom 6670 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 (class class class)co 5897 Pcnp 7321 +P cpp 7323 ·P cmp 7324 ~R cer 7326 Rcnr 7327 ·R cmr 7332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-eprel 4307 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-recs 6331 df-irdg 6396 df-1o 6442 df-2o 6443 df-oadd 6446 df-omul 6447 df-er 6560 df-ec 6562 df-qs 6566 df-ni 7334 df-pli 7335 df-mi 7336 df-lti 7337 df-plpq 7374 df-mpq 7375 df-enq 7377 df-nqqs 7378 df-plqqs 7379 df-mqqs 7380 df-1nqqs 7381 df-rq 7382 df-ltnqqs 7383 df-enq0 7454 df-nq0 7455 df-0nq0 7456 df-plq0 7457 df-mq0 7458 df-inp 7496 df-iplp 7498 df-imp 7499 df-enr 7756 df-nr 7757 df-mr 7759 |
This theorem is referenced by: mulresr 7868 axmulcom 7901 axmulass 7903 axcnre 7911 |
Copyright terms: Public domain | W3C validator |