| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcomsrg | GIF version | ||
| Description: Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
| Ref | Expression |
|---|---|
| mulcomsrg | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 7882 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 2 | mulsrpr 7901 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) = [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ) | |
| 3 | mulsrpr 7901 | . 2 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) → ([〈𝑧, 𝑤〉] ~R ·R [〈𝑥, 𝑦〉] ~R ) = [〈((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦)), ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))〉] ~R ) | |
| 4 | mulcomprg 7735 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 ·P 𝑧) = (𝑧 ·P 𝑥)) | |
| 5 | 4 | ad2ant2r 509 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑥 ·P 𝑧) = (𝑧 ·P 𝑥)) |
| 6 | mulcomprg 7735 | . . . 4 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 ·P 𝑤) = (𝑤 ·P 𝑦)) | |
| 7 | 6 | ad2ant2l 508 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑦 ·P 𝑤) = (𝑤 ·P 𝑦)) |
| 8 | 5, 7 | oveq12d 5992 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = ((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦))) |
| 9 | mulcomprg 7735 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑤 ∈ P) → (𝑥 ·P 𝑤) = (𝑤 ·P 𝑥)) | |
| 10 | 9 | ad2ant2rl 511 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑥 ·P 𝑤) = (𝑤 ·P 𝑥)) |
| 11 | mulcomprg 7735 | . . . . 5 ⊢ ((𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦 ·P 𝑧) = (𝑧 ·P 𝑦)) | |
| 12 | 11 | ad2ant2lr 510 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑦 ·P 𝑧) = (𝑧 ·P 𝑦)) |
| 13 | 10, 12 | oveq12d 5992 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦))) |
| 14 | mulclpr 7727 | . . . . . 6 ⊢ ((𝑤 ∈ P ∧ 𝑥 ∈ P) → (𝑤 ·P 𝑥) ∈ P) | |
| 15 | 14 | ancoms 268 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑤 ∈ P) → (𝑤 ·P 𝑥) ∈ P) |
| 16 | 15 | ad2ant2rl 511 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑤 ·P 𝑥) ∈ P) |
| 17 | mulclpr 7727 | . . . . . 6 ⊢ ((𝑧 ∈ P ∧ 𝑦 ∈ P) → (𝑧 ·P 𝑦) ∈ P) | |
| 18 | 17 | ancoms 268 | . . . . 5 ⊢ ((𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑧 ·P 𝑦) ∈ P) |
| 19 | 18 | ad2ant2lr 510 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑧 ·P 𝑦) ∈ P) |
| 20 | addcomprg 7733 | . . . 4 ⊢ (((𝑤 ·P 𝑥) ∈ P ∧ (𝑧 ·P 𝑦) ∈ P) → ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))) | |
| 21 | 16, 19, 20 | syl2anc 411 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))) |
| 22 | 13, 21 | eqtrd 2242 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))) |
| 23 | 1, 2, 3, 8, 22 | ecovicom 6760 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 (class class class)co 5974 Pcnp 7446 +P cpp 7448 ·P cmp 7449 ~R cer 7451 Rcnr 7452 ·R cmr 7457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-eprel 4357 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-1o 6532 df-2o 6533 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-pli 7460 df-mi 7461 df-lti 7462 df-plpq 7499 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-plqqs 7504 df-mqqs 7505 df-1nqqs 7506 df-rq 7507 df-ltnqqs 7508 df-enq0 7579 df-nq0 7580 df-0nq0 7581 df-plq0 7582 df-mq0 7583 df-inp 7621 df-iplp 7623 df-imp 7624 df-enr 7881 df-nr 7882 df-mr 7884 |
| This theorem is referenced by: mulresr 7993 axmulcom 8026 axmulass 8028 axcnre 8036 |
| Copyright terms: Public domain | W3C validator |