ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomsrg GIF version

Theorem mulcomsrg 7912
Description: Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
Assertion
Ref Expression
mulcomsrg ((𝐴R𝐵R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴))

Proof of Theorem mulcomsrg
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7882 . 2 R = ((P × P) / ~R )
2 mulsrpr 7901 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
3 mulsrpr 7901 . 2 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑥, 𝑦⟩] ~R ) = [⟨((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦)), ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))⟩] ~R )
4 mulcomprg 7735 . . . 4 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) = (𝑧 ·P 𝑥))
54ad2ant2r 509 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑧) = (𝑧 ·P 𝑥))
6 mulcomprg 7735 . . . 4 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) = (𝑤 ·P 𝑦))
76ad2ant2l 508 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑤) = (𝑤 ·P 𝑦))
85, 7oveq12d 5992 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = ((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦)))
9 mulcomprg 7735 . . . . 5 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) = (𝑤 ·P 𝑥))
109ad2ant2rl 511 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑤) = (𝑤 ·P 𝑥))
11 mulcomprg 7735 . . . . 5 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) = (𝑧 ·P 𝑦))
1211ad2ant2lr 510 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑧) = (𝑧 ·P 𝑦))
1310, 12oveq12d 5992 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)))
14 mulclpr 7727 . . . . . 6 ((𝑤P𝑥P) → (𝑤 ·P 𝑥) ∈ P)
1514ancoms 268 . . . . 5 ((𝑥P𝑤P) → (𝑤 ·P 𝑥) ∈ P)
1615ad2ant2rl 511 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑤 ·P 𝑥) ∈ P)
17 mulclpr 7727 . . . . . 6 ((𝑧P𝑦P) → (𝑧 ·P 𝑦) ∈ P)
1817ancoms 268 . . . . 5 ((𝑦P𝑧P) → (𝑧 ·P 𝑦) ∈ P)
1918ad2ant2lr 510 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑧 ·P 𝑦) ∈ P)
20 addcomprg 7733 . . . 4 (((𝑤 ·P 𝑥) ∈ P ∧ (𝑧 ·P 𝑦) ∈ P) → ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥)))
2116, 19, 20syl2anc 411 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥)))
2213, 21eqtrd 2242 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥)))
231, 2, 3, 8, 22ecovicom 6760 1 ((𝐴R𝐵R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  (class class class)co 5974  Pcnp 7446   +P cpp 7448   ·P cmp 7449   ~R cer 7451  Rcnr 7452   ·R cmr 7457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-2o 6533  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508  df-enq0 7579  df-nq0 7580  df-0nq0 7581  df-plq0 7582  df-mq0 7583  df-inp 7621  df-iplp 7623  df-imp 7624  df-enr 7881  df-nr 7882  df-mr 7884
This theorem is referenced by:  mulresr  7993  axmulcom  8026  axmulass  8028  axcnre  8036
  Copyright terms: Public domain W3C validator