ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomsrg GIF version

Theorem mulcomsrg 7589
Description: Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
Assertion
Ref Expression
mulcomsrg ((𝐴R𝐵R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴))

Proof of Theorem mulcomsrg
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7559 . 2 R = ((P × P) / ~R )
2 mulsrpr 7578 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
3 mulsrpr 7578 . 2 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑥, 𝑦⟩] ~R ) = [⟨((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦)), ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))⟩] ~R )
4 mulcomprg 7412 . . . 4 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) = (𝑧 ·P 𝑥))
54ad2ant2r 501 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑧) = (𝑧 ·P 𝑥))
6 mulcomprg 7412 . . . 4 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) = (𝑤 ·P 𝑦))
76ad2ant2l 500 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑤) = (𝑤 ·P 𝑦))
85, 7oveq12d 5800 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = ((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦)))
9 mulcomprg 7412 . . . . 5 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) = (𝑤 ·P 𝑥))
109ad2ant2rl 503 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑤) = (𝑤 ·P 𝑥))
11 mulcomprg 7412 . . . . 5 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) = (𝑧 ·P 𝑦))
1211ad2ant2lr 502 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑧) = (𝑧 ·P 𝑦))
1310, 12oveq12d 5800 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)))
14 mulclpr 7404 . . . . . 6 ((𝑤P𝑥P) → (𝑤 ·P 𝑥) ∈ P)
1514ancoms 266 . . . . 5 ((𝑥P𝑤P) → (𝑤 ·P 𝑥) ∈ P)
1615ad2ant2rl 503 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑤 ·P 𝑥) ∈ P)
17 mulclpr 7404 . . . . . 6 ((𝑧P𝑦P) → (𝑧 ·P 𝑦) ∈ P)
1817ancoms 266 . . . . 5 ((𝑦P𝑧P) → (𝑧 ·P 𝑦) ∈ P)
1918ad2ant2lr 502 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑧 ·P 𝑦) ∈ P)
20 addcomprg 7410 . . . 4 (((𝑤 ·P 𝑥) ∈ P ∧ (𝑧 ·P 𝑦) ∈ P) → ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥)))
2116, 19, 20syl2anc 409 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥)))
2213, 21eqtrd 2173 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥)))
231, 2, 3, 8, 22ecovicom 6545 1 ((𝐴R𝐵R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  (class class class)co 5782  Pcnp 7123   +P cpp 7125   ·P cmp 7126   ~R cer 7128  Rcnr 7129   ·R cmr 7134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-imp 7301  df-enr 7558  df-nr 7559  df-mr 7561
This theorem is referenced by:  mulresr  7670  axmulcom  7703  axmulass  7705  axcnre  7713
  Copyright terms: Public domain W3C validator