![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcomsrg | GIF version |
Description: Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
Ref | Expression |
---|---|
mulcomsrg | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 7787 | . 2 ⊢ R = ((P × P) / ~R ) | |
2 | mulsrpr 7806 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) = [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ) | |
3 | mulsrpr 7806 | . 2 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) → ([〈𝑧, 𝑤〉] ~R ·R [〈𝑥, 𝑦〉] ~R ) = [〈((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦)), ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))〉] ~R ) | |
4 | mulcomprg 7640 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 ·P 𝑧) = (𝑧 ·P 𝑥)) | |
5 | 4 | ad2ant2r 509 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑥 ·P 𝑧) = (𝑧 ·P 𝑥)) |
6 | mulcomprg 7640 | . . . 4 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 ·P 𝑤) = (𝑤 ·P 𝑦)) | |
7 | 6 | ad2ant2l 508 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑦 ·P 𝑤) = (𝑤 ·P 𝑦)) |
8 | 5, 7 | oveq12d 5936 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = ((𝑧 ·P 𝑥) +P (𝑤 ·P 𝑦))) |
9 | mulcomprg 7640 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑤 ∈ P) → (𝑥 ·P 𝑤) = (𝑤 ·P 𝑥)) | |
10 | 9 | ad2ant2rl 511 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑥 ·P 𝑤) = (𝑤 ·P 𝑥)) |
11 | mulcomprg 7640 | . . . . 5 ⊢ ((𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦 ·P 𝑧) = (𝑧 ·P 𝑦)) | |
12 | 11 | ad2ant2lr 510 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑦 ·P 𝑧) = (𝑧 ·P 𝑦)) |
13 | 10, 12 | oveq12d 5936 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦))) |
14 | mulclpr 7632 | . . . . . 6 ⊢ ((𝑤 ∈ P ∧ 𝑥 ∈ P) → (𝑤 ·P 𝑥) ∈ P) | |
15 | 14 | ancoms 268 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑤 ∈ P) → (𝑤 ·P 𝑥) ∈ P) |
16 | 15 | ad2ant2rl 511 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑤 ·P 𝑥) ∈ P) |
17 | mulclpr 7632 | . . . . . 6 ⊢ ((𝑧 ∈ P ∧ 𝑦 ∈ P) → (𝑧 ·P 𝑦) ∈ P) | |
18 | 17 | ancoms 268 | . . . . 5 ⊢ ((𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑧 ·P 𝑦) ∈ P) |
19 | 18 | ad2ant2lr 510 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑧 ·P 𝑦) ∈ P) |
20 | addcomprg 7638 | . . . 4 ⊢ (((𝑤 ·P 𝑥) ∈ P ∧ (𝑧 ·P 𝑦) ∈ P) → ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))) | |
21 | 16, 19, 20 | syl2anc 411 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑤 ·P 𝑥) +P (𝑧 ·P 𝑦)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))) |
22 | 13, 21 | eqtrd 2226 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) = ((𝑧 ·P 𝑦) +P (𝑤 ·P 𝑥))) |
23 | 1, 2, 3, 8, 22 | ecovicom 6697 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 Pcnp 7351 +P cpp 7353 ·P cmp 7354 ~R cer 7356 Rcnr 7357 ·R cmr 7362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-eprel 4320 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-1o 6469 df-2o 6470 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-pli 7365 df-mi 7366 df-lti 7367 df-plpq 7404 df-mpq 7405 df-enq 7407 df-nqqs 7408 df-plqqs 7409 df-mqqs 7410 df-1nqqs 7411 df-rq 7412 df-ltnqqs 7413 df-enq0 7484 df-nq0 7485 df-0nq0 7486 df-plq0 7487 df-mq0 7488 df-inp 7526 df-iplp 7528 df-imp 7529 df-enr 7786 df-nr 7787 df-mr 7789 |
This theorem is referenced by: mulresr 7898 axmulcom 7931 axmulass 7933 axcnre 7941 |
Copyright terms: Public domain | W3C validator |