ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divadddivap GIF version

Theorem divadddivap 8487
Description: Addition of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
divadddivap (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) + (𝐵 / 𝐷)) = (((𝐴 · 𝐷) + (𝐵 · 𝐶)) / (𝐶 · 𝐷)))

Proof of Theorem divadddivap
StepHypRef Expression
1 mulcl 7747 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐷) ∈ ℂ)
21ad2ant2r 500 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐴 · 𝐷) ∈ ℂ)
32adantrl 469 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐴 · 𝐷) ∈ ℂ)
4 mulcl 7747 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
54adantrr 470 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐵 · 𝐶) ∈ ℂ)
65ad2ant2lr 501 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐵 · 𝐶) ∈ ℂ)
7 mulcl 7747 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 · 𝐷) ∈ ℂ)
87ad2ant2r 500 . . . . 5 (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 · 𝐷) ∈ ℂ)
9 mulap0 8415 . . . . 5 (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 · 𝐷) # 0)
108, 9jca 304 . . . 4 (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) # 0))
1110adantl 275 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) # 0))
12 divdirap 8457 . . 3 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ ∧ ((𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) # 0)) → (((𝐴 · 𝐷) + (𝐵 · 𝐶)) / (𝐶 · 𝐷)) = (((𝐴 · 𝐷) / (𝐶 · 𝐷)) + ((𝐵 · 𝐶) / (𝐶 · 𝐷))))
133, 6, 11, 12syl3anc 1216 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐴 · 𝐷) + (𝐵 · 𝐶)) / (𝐶 · 𝐷)) = (((𝐴 · 𝐷) / (𝐶 · 𝐷)) + ((𝐵 · 𝐶) / (𝐶 · 𝐷))))
14 simpll 518 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐴 ∈ ℂ)
15 simprr 521 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐷 ∈ ℂ ∧ 𝐷 # 0))
1615simpld 111 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐷 ∈ ℂ)
1714, 16mulcomd 7787 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐴 · 𝐷) = (𝐷 · 𝐴))
18 simprll 526 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐶 ∈ ℂ)
1918, 16mulcomd 7787 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐶 · 𝐷) = (𝐷 · 𝐶))
2017, 19oveq12d 5792 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 · 𝐷) / (𝐶 · 𝐷)) = ((𝐷 · 𝐴) / (𝐷 · 𝐶)))
21 simprl 520 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐶 ∈ ℂ ∧ 𝐶 # 0))
22 divcanap5 8474 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐷 · 𝐴) / (𝐷 · 𝐶)) = (𝐴 / 𝐶))
2314, 21, 15, 22syl3anc 1216 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐷 · 𝐴) / (𝐷 · 𝐶)) = (𝐴 / 𝐶))
2420, 23eqtrd 2172 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 · 𝐷) / (𝐶 · 𝐷)) = (𝐴 / 𝐶))
25 simplr 519 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐵 ∈ ℂ)
2625, 18mulcomd 7787 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
2726oveq1d 5789 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐵 · 𝐶) / (𝐶 · 𝐷)) = ((𝐶 · 𝐵) / (𝐶 · 𝐷)))
28 divcanap5 8474 . . . . 5 ((𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · 𝐵) / (𝐶 · 𝐷)) = (𝐵 / 𝐷))
2925, 15, 21, 28syl3anc 1216 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 · 𝐵) / (𝐶 · 𝐷)) = (𝐵 / 𝐷))
3027, 29eqtrd 2172 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐵 · 𝐶) / (𝐶 · 𝐷)) = (𝐵 / 𝐷))
3124, 30oveq12d 5792 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐴 · 𝐷) / (𝐶 · 𝐷)) + ((𝐵 · 𝐶) / (𝐶 · 𝐷))) = ((𝐴 / 𝐶) + (𝐵 / 𝐷)))
3213, 31eqtr2d 2173 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) + (𝐵 / 𝐷)) = (((𝐴 · 𝐷) + (𝐵 · 𝐶)) / (𝐶 · 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480   class class class wbr 3929  (class class class)co 5774  cc 7618  0cc0 7620   + caddc 7623   · cmul 7625   # cap 8343   / cdiv 8432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433
This theorem is referenced by:  divsubdivap  8488  divadddivapi  8534  qaddcl  9427
  Copyright terms: Public domain W3C validator