Proof of Theorem divadddivap
Step | Hyp | Ref
| Expression |
1 | | mulcl 7901 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐷) ∈ ℂ) |
2 | 1 | ad2ant2r 506 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐴 · 𝐷) ∈ ℂ) |
3 | 2 | adantrl 475 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐴 · 𝐷) ∈ ℂ) |
4 | | mulcl 7901 |
. . . . 5
⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ) |
5 | 4 | adantrr 476 |
. . . 4
⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐵 · 𝐶) ∈ ℂ) |
6 | 5 | ad2ant2lr 507 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐵 · 𝐶) ∈ ℂ) |
7 | | mulcl 7901 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 · 𝐷) ∈ ℂ) |
8 | 7 | ad2ant2r 506 |
. . . . 5
⊢ (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 · 𝐷) ∈ ℂ) |
9 | | mulap0 8572 |
. . . . 5
⊢ (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 · 𝐷) # 0) |
10 | 8, 9 | jca 304 |
. . . 4
⊢ (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) # 0)) |
11 | 10 | adantl 275 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) # 0)) |
12 | | divdirap 8614 |
. . 3
⊢ (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ ∧ ((𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) # 0)) → (((𝐴 · 𝐷) + (𝐵 · 𝐶)) / (𝐶 · 𝐷)) = (((𝐴 · 𝐷) / (𝐶 · 𝐷)) + ((𝐵 · 𝐶) / (𝐶 · 𝐷)))) |
13 | 3, 6, 11, 12 | syl3anc 1233 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐴 · 𝐷) + (𝐵 · 𝐶)) / (𝐶 · 𝐷)) = (((𝐴 · 𝐷) / (𝐶 · 𝐷)) + ((𝐵 · 𝐶) / (𝐶 · 𝐷)))) |
14 | | simpll 524 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐴 ∈ ℂ) |
15 | | simprr 527 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐷 ∈ ℂ ∧ 𝐷 # 0)) |
16 | 15 | simpld 111 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐷 ∈ ℂ) |
17 | 14, 16 | mulcomd 7941 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐴 · 𝐷) = (𝐷 · 𝐴)) |
18 | | simprll 532 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐶 ∈ ℂ) |
19 | 18, 16 | mulcomd 7941 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐶 · 𝐷) = (𝐷 · 𝐶)) |
20 | 17, 19 | oveq12d 5871 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 · 𝐷) / (𝐶 · 𝐷)) = ((𝐷 · 𝐴) / (𝐷 · 𝐶))) |
21 | | simprl 526 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐶 ∈ ℂ ∧ 𝐶 # 0)) |
22 | | divcanap5 8631 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐷 · 𝐴) / (𝐷 · 𝐶)) = (𝐴 / 𝐶)) |
23 | 14, 21, 15, 22 | syl3anc 1233 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐷 · 𝐴) / (𝐷 · 𝐶)) = (𝐴 / 𝐶)) |
24 | 20, 23 | eqtrd 2203 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 · 𝐷) / (𝐶 · 𝐷)) = (𝐴 / 𝐶)) |
25 | | simplr 525 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐵 ∈ ℂ) |
26 | 25, 18 | mulcomd 7941 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
27 | 26 | oveq1d 5868 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐵 · 𝐶) / (𝐶 · 𝐷)) = ((𝐶 · 𝐵) / (𝐶 · 𝐷))) |
28 | | divcanap5 8631 |
. . . . 5
⊢ ((𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · 𝐵) / (𝐶 · 𝐷)) = (𝐵 / 𝐷)) |
29 | 25, 15, 21, 28 | syl3anc 1233 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 · 𝐵) / (𝐶 · 𝐷)) = (𝐵 / 𝐷)) |
30 | 27, 29 | eqtrd 2203 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐵 · 𝐶) / (𝐶 · 𝐷)) = (𝐵 / 𝐷)) |
31 | 24, 30 | oveq12d 5871 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐴 · 𝐷) / (𝐶 · 𝐷)) + ((𝐵 · 𝐶) / (𝐶 · 𝐷))) = ((𝐴 / 𝐶) + (𝐵 / 𝐷))) |
32 | 13, 31 | eqtr2d 2204 |
1
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) + (𝐵 / 𝐷)) = (((𝐴 · 𝐷) + (𝐵 · 𝐶)) / (𝐶 · 𝐷))) |