![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lt2addnq | GIF version |
Description: Ordering property of addition for positive fractions. (Contributed by Jim Kingdon, 7-Dec-2019.) |
Ref | Expression |
---|---|
lt2addnq | ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltanqg 7156 | . . . . . 6 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) | |
2 | 1 | 3expa 1164 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) |
3 | 2 | adantrr 468 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) |
4 | addcomnqg 7137 | . . . . . . 7 ⊢ ((𝐶 ∈ Q ∧ 𝐴 ∈ Q) → (𝐶 +Q 𝐴) = (𝐴 +Q 𝐶)) | |
5 | 4 | ancoms 266 | . . . . . 6 ⊢ ((𝐴 ∈ Q ∧ 𝐶 ∈ Q) → (𝐶 +Q 𝐴) = (𝐴 +Q 𝐶)) |
6 | 5 | ad2ant2r 498 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 +Q 𝐴) = (𝐴 +Q 𝐶)) |
7 | addcomnqg 7137 | . . . . . . 7 ⊢ ((𝐶 ∈ Q ∧ 𝐵 ∈ Q) → (𝐶 +Q 𝐵) = (𝐵 +Q 𝐶)) | |
8 | 7 | ancoms 266 | . . . . . 6 ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐶 +Q 𝐵) = (𝐵 +Q 𝐶)) |
9 | 8 | ad2ant2lr 499 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 +Q 𝐵) = (𝐵 +Q 𝐶)) |
10 | 6, 9 | breq12d 3908 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵) ↔ (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐶))) |
11 | 3, 10 | bitrd 187 | . . 3 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐴 <Q 𝐵 ↔ (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐶))) |
12 | ltanqg 7156 | . . . . . 6 ⊢ ((𝐶 ∈ Q ∧ 𝐷 ∈ Q ∧ 𝐵 ∈ Q) → (𝐶 <Q 𝐷 ↔ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷))) | |
13 | 12 | 3expa 1164 | . . . . 5 ⊢ (((𝐶 ∈ Q ∧ 𝐷 ∈ Q) ∧ 𝐵 ∈ Q) → (𝐶 <Q 𝐷 ↔ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷))) |
14 | 13 | ancoms 266 | . . . 4 ⊢ ((𝐵 ∈ Q ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 <Q 𝐷 ↔ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷))) |
15 | 14 | adantll 465 | . . 3 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 <Q 𝐷 ↔ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷))) |
16 | 11, 15 | anbi12d 462 | . 2 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) ↔ ((𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐶) ∧ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷)))) |
17 | ltsonq 7154 | . . 3 ⊢ <Q Or Q | |
18 | ltrelnq 7121 | . . 3 ⊢ <Q ⊆ (Q × Q) | |
19 | 17, 18 | sotri 4892 | . 2 ⊢ (((𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐶) ∧ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷)) → (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐷)) |
20 | 16, 19 | syl6bi 162 | 1 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1314 ∈ wcel 1463 class class class wbr 3895 (class class class)co 5728 Qcnq 7036 +Q cplq 7038 <Q cltq 7041 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-eprel 4171 df-id 4175 df-po 4178 df-iso 4179 df-iord 4248 df-on 4250 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-irdg 6221 df-oadd 6271 df-omul 6272 df-er 6383 df-ec 6385 df-qs 6389 df-ni 7060 df-pli 7061 df-mi 7062 df-lti 7063 df-plpq 7100 df-enq 7103 df-nqqs 7104 df-plqqs 7105 df-ltnqqs 7109 |
This theorem is referenced by: addlocprlemeqgt 7288 addnqprlemrl 7313 addnqprlemru 7314 cauappcvgprlemladdfl 7411 caucvgprlemloc 7431 caucvgprprlemloccalc 7440 |
Copyright terms: Public domain | W3C validator |