| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lt2addnq | GIF version | ||
| Description: Ordering property of addition for positive fractions. (Contributed by Jim Kingdon, 7-Dec-2019.) |
| Ref | Expression |
|---|---|
| lt2addnq | ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltanqg 7520 | . . . . . 6 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) | |
| 2 | 1 | 3expa 1206 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) |
| 3 | 2 | adantrr 479 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) |
| 4 | addcomnqg 7501 | . . . . . . 7 ⊢ ((𝐶 ∈ Q ∧ 𝐴 ∈ Q) → (𝐶 +Q 𝐴) = (𝐴 +Q 𝐶)) | |
| 5 | 4 | ancoms 268 | . . . . . 6 ⊢ ((𝐴 ∈ Q ∧ 𝐶 ∈ Q) → (𝐶 +Q 𝐴) = (𝐴 +Q 𝐶)) |
| 6 | 5 | ad2ant2r 509 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 +Q 𝐴) = (𝐴 +Q 𝐶)) |
| 7 | addcomnqg 7501 | . . . . . . 7 ⊢ ((𝐶 ∈ Q ∧ 𝐵 ∈ Q) → (𝐶 +Q 𝐵) = (𝐵 +Q 𝐶)) | |
| 8 | 7 | ancoms 268 | . . . . . 6 ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐶 +Q 𝐵) = (𝐵 +Q 𝐶)) |
| 9 | 8 | ad2ant2lr 510 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 +Q 𝐵) = (𝐵 +Q 𝐶)) |
| 10 | 6, 9 | breq12d 4060 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵) ↔ (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐶))) |
| 11 | 3, 10 | bitrd 188 | . . 3 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐴 <Q 𝐵 ↔ (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐶))) |
| 12 | ltanqg 7520 | . . . . . 6 ⊢ ((𝐶 ∈ Q ∧ 𝐷 ∈ Q ∧ 𝐵 ∈ Q) → (𝐶 <Q 𝐷 ↔ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷))) | |
| 13 | 12 | 3expa 1206 | . . . . 5 ⊢ (((𝐶 ∈ Q ∧ 𝐷 ∈ Q) ∧ 𝐵 ∈ Q) → (𝐶 <Q 𝐷 ↔ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷))) |
| 14 | 13 | ancoms 268 | . . . 4 ⊢ ((𝐵 ∈ Q ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 <Q 𝐷 ↔ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷))) |
| 15 | 14 | adantll 476 | . . 3 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 <Q 𝐷 ↔ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷))) |
| 16 | 11, 15 | anbi12d 473 | . 2 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) ↔ ((𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐶) ∧ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷)))) |
| 17 | ltsonq 7518 | . . 3 ⊢ <Q Or Q | |
| 18 | ltrelnq 7485 | . . 3 ⊢ <Q ⊆ (Q × Q) | |
| 19 | 17, 18 | sotri 5083 | . 2 ⊢ (((𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐶) ∧ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷)) → (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐷)) |
| 20 | 16, 19 | biimtrdi 163 | 1 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 (class class class)co 5951 Qcnq 7400 +Q cplq 7402 <Q cltq 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-eprel 4340 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-oadd 6513 df-omul 6514 df-er 6627 df-ec 6629 df-qs 6633 df-ni 7424 df-pli 7425 df-mi 7426 df-lti 7427 df-plpq 7464 df-enq 7467 df-nqqs 7468 df-plqqs 7469 df-ltnqqs 7473 |
| This theorem is referenced by: addlocprlemeqgt 7652 addnqprlemrl 7677 addnqprlemru 7678 cauappcvgprlemladdfl 7775 caucvgprlemloc 7795 caucvgprprlemloccalc 7804 |
| Copyright terms: Public domain | W3C validator |