![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lt2addnq | GIF version |
Description: Ordering property of addition for positive fractions. (Contributed by Jim Kingdon, 7-Dec-2019.) |
Ref | Expression |
---|---|
lt2addnq | ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltanqg 7460 | . . . . . 6 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) | |
2 | 1 | 3expa 1205 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) |
3 | 2 | adantrr 479 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) |
4 | addcomnqg 7441 | . . . . . . 7 ⊢ ((𝐶 ∈ Q ∧ 𝐴 ∈ Q) → (𝐶 +Q 𝐴) = (𝐴 +Q 𝐶)) | |
5 | 4 | ancoms 268 | . . . . . 6 ⊢ ((𝐴 ∈ Q ∧ 𝐶 ∈ Q) → (𝐶 +Q 𝐴) = (𝐴 +Q 𝐶)) |
6 | 5 | ad2ant2r 509 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 +Q 𝐴) = (𝐴 +Q 𝐶)) |
7 | addcomnqg 7441 | . . . . . . 7 ⊢ ((𝐶 ∈ Q ∧ 𝐵 ∈ Q) → (𝐶 +Q 𝐵) = (𝐵 +Q 𝐶)) | |
8 | 7 | ancoms 268 | . . . . . 6 ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐶 +Q 𝐵) = (𝐵 +Q 𝐶)) |
9 | 8 | ad2ant2lr 510 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 +Q 𝐵) = (𝐵 +Q 𝐶)) |
10 | 6, 9 | breq12d 4042 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵) ↔ (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐶))) |
11 | 3, 10 | bitrd 188 | . . 3 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐴 <Q 𝐵 ↔ (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐶))) |
12 | ltanqg 7460 | . . . . . 6 ⊢ ((𝐶 ∈ Q ∧ 𝐷 ∈ Q ∧ 𝐵 ∈ Q) → (𝐶 <Q 𝐷 ↔ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷))) | |
13 | 12 | 3expa 1205 | . . . . 5 ⊢ (((𝐶 ∈ Q ∧ 𝐷 ∈ Q) ∧ 𝐵 ∈ Q) → (𝐶 <Q 𝐷 ↔ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷))) |
14 | 13 | ancoms 268 | . . . 4 ⊢ ((𝐵 ∈ Q ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 <Q 𝐷 ↔ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷))) |
15 | 14 | adantll 476 | . . 3 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 <Q 𝐷 ↔ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷))) |
16 | 11, 15 | anbi12d 473 | . 2 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) ↔ ((𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐶) ∧ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷)))) |
17 | ltsonq 7458 | . . 3 ⊢ <Q Or Q | |
18 | ltrelnq 7425 | . . 3 ⊢ <Q ⊆ (Q × Q) | |
19 | 17, 18 | sotri 5061 | . 2 ⊢ (((𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐶) ∧ (𝐵 +Q 𝐶) <Q (𝐵 +Q 𝐷)) → (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐷)) |
20 | 16, 19 | biimtrdi 163 | 1 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 Qcnq 7340 +Q cplq 7342 <Q cltq 7345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-eprel 4320 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-pli 7365 df-mi 7366 df-lti 7367 df-plpq 7404 df-enq 7407 df-nqqs 7408 df-plqqs 7409 df-ltnqqs 7413 |
This theorem is referenced by: addlocprlemeqgt 7592 addnqprlemrl 7617 addnqprlemru 7618 cauappcvgprlemladdfl 7715 caucvgprlemloc 7735 caucvgprprlemloccalc 7744 |
Copyright terms: Public domain | W3C validator |