ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrsrg GIF version

Theorem distrsrg 7907
Description: Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.)
Assertion
Ref Expression
distrsrg ((𝐴R𝐵R𝐶R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)))

Proof of Theorem distrsrg
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7875 . 2 R = ((P × P) / ~R )
2 addsrpr 7893 . 2 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R +R [⟨𝑣, 𝑢⟩] ~R ) = [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R )
3 mulsrpr 7894 . 2 (((𝑥P𝑦P) ∧ ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R ) = [⟨((𝑥 ·P (𝑧 +P 𝑣)) +P (𝑦 ·P (𝑤 +P 𝑢))), ((𝑥 ·P (𝑤 +P 𝑢)) +P (𝑦 ·P (𝑧 +P 𝑣)))⟩] ~R )
4 mulsrpr 7894 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
5 mulsrpr 7894 . 2 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)), ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))⟩] ~R )
6 addsrpr 7893 . 2 (((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) ∧ (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P ∧ ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)) → ([⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R +R [⟨((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)), ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))⟩] ~R ) = [⟨(((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))), (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)))⟩] ~R )
7 addclpr 7685 . . . 4 ((𝑧P𝑣P) → (𝑧 +P 𝑣) ∈ P)
87ad2ant2r 509 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑧 +P 𝑣) ∈ P)
9 addclpr 7685 . . . 4 ((𝑤P𝑢P) → (𝑤 +P 𝑢) ∈ P)
109ad2ant2l 508 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 +P 𝑢) ∈ P)
118, 10jca 306 . 2 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P))
12 mulclpr 7720 . . . . 5 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
1312ad2ant2r 509 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑧) ∈ P)
14 mulclpr 7720 . . . . 5 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
1514ad2ant2l 508 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑤) ∈ P)
16 addclpr 7685 . . . 4 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
1713, 15, 16syl2anc 411 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
18 mulclpr 7720 . . . . 5 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
1918ad2ant2rl 511 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑤) ∈ P)
20 mulclpr 7720 . . . . 5 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
2120ad2ant2lr 510 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑧) ∈ P)
22 addclpr 7685 . . . 4 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
2319, 21, 22syl2anc 411 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
2417, 23jca 306 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P))
25 mulclpr 7720 . . . . 5 ((𝑥P𝑣P) → (𝑥 ·P 𝑣) ∈ P)
2625ad2ant2r 509 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑣) ∈ P)
27 mulclpr 7720 . . . . 5 ((𝑦P𝑢P) → (𝑦 ·P 𝑢) ∈ P)
2827ad2ant2l 508 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑢) ∈ P)
29 addclpr 7685 . . . 4 (((𝑥 ·P 𝑣) ∈ P ∧ (𝑦 ·P 𝑢) ∈ P) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
3026, 28, 29syl2anc 411 . . 3 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
31 mulclpr 7720 . . . . 5 ((𝑥P𝑢P) → (𝑥 ·P 𝑢) ∈ P)
3231ad2ant2rl 511 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑢) ∈ P)
33 mulclpr 7720 . . . . 5 ((𝑦P𝑣P) → (𝑦 ·P 𝑣) ∈ P)
3433ad2ant2lr 510 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑣) ∈ P)
35 addclpr 7685 . . . 4 (((𝑥 ·P 𝑢) ∈ P ∧ (𝑦 ·P 𝑣) ∈ P) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3632, 34, 35syl2anc 411 . . 3 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3730, 36jca 306 . 2 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P ∧ ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P))
38 simp1l 1024 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑥P)
39 simp2l 1026 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑧P)
40 simp3l 1028 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑣P)
41 distrprg 7736 . . . . 5 ((𝑥P𝑧P𝑣P) → (𝑥 ·P (𝑧 +P 𝑣)) = ((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)))
4238, 39, 40, 41syl3anc 1250 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P (𝑧 +P 𝑣)) = ((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)))
43 simp1r 1025 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑦P)
44 simp2r 1027 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑤P)
45 simp3r 1029 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑢P)
46 distrprg 7736 . . . . 5 ((𝑦P𝑤P𝑢P) → (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
4743, 44, 45, 46syl3anc 1250 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
4842, 47oveq12d 5985 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P (𝑧 +P 𝑣)) +P (𝑦 ·P (𝑤 +P 𝑢))) = (((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)) +P ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢))))
4938, 39, 12syl2anc 411 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑧) ∈ P)
5038, 40, 25syl2anc 411 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑣) ∈ P)
5143, 44, 14syl2anc 411 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑤) ∈ P)
52 addcomprg 7726 . . . . 5 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
5352adantl 277 . . . 4 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
54 addassprg 7727 . . . . 5 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
5554adantl 277 . . . 4 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
5643, 45, 27syl2anc 411 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑢) ∈ P)
57 addclpr 7685 . . . . 5 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
5857adantl 277 . . . 4 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
5949, 50, 51, 53, 55, 56, 58caov4d 6154 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)) +P ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢))) = (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))))
6048, 59eqtrd 2240 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P (𝑧 +P 𝑣)) +P (𝑦 ·P (𝑤 +P 𝑢))) = (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))))
61 distrprg 7736 . . . . 5 ((𝑥P𝑤P𝑢P) → (𝑥 ·P (𝑤 +P 𝑢)) = ((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)))
6238, 44, 45, 61syl3anc 1250 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P (𝑤 +P 𝑢)) = ((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)))
63 distrprg 7736 . . . . 5 ((𝑦P𝑧P𝑣P) → (𝑦 ·P (𝑧 +P 𝑣)) = ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣)))
6443, 39, 40, 63syl3anc 1250 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P (𝑧 +P 𝑣)) = ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣)))
6562, 64oveq12d 5985 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P (𝑤 +P 𝑢)) +P (𝑦 ·P (𝑧 +P 𝑣))) = (((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)) +P ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣))))
6638, 44, 18syl2anc 411 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑤) ∈ P)
6738, 45, 31syl2anc 411 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑢) ∈ P)
6843, 39, 20syl2anc 411 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑧) ∈ P)
6943, 40, 33syl2anc 411 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑣) ∈ P)
7066, 67, 68, 53, 55, 69, 58caov4d 6154 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)) +P ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣))) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))))
7165, 70eqtrd 2240 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P (𝑤 +P 𝑢)) +P (𝑦 ·P (𝑧 +P 𝑣))) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))))
721, 2, 3, 4, 5, 6, 11, 24, 37, 60, 71ecovidi 6757 1 ((𝐴R𝐵R𝐶R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2178  (class class class)co 5967  Pcnp 7439   +P cpp 7441   ·P cmp 7442   ~R cer 7444  Rcnr 7445   +R cplr 7449   ·R cmr 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-iplp 7616  df-imp 7617  df-enr 7874  df-nr 7875  df-plr 7876  df-mr 7877
This theorem is referenced by:  pn0sr  7919  axmulass  8021  axdistr  8022
  Copyright terms: Public domain W3C validator