ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrsrg GIF version

Theorem distrsrg 7206
Description: Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.)
Assertion
Ref Expression
distrsrg ((𝐴R𝐵R𝐶R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)))

Proof of Theorem distrsrg
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7174 . 2 R = ((P × P) / ~R )
2 addsrpr 7192 . 2 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R +R [⟨𝑣, 𝑢⟩] ~R ) = [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R )
3 mulsrpr 7193 . 2 (((𝑥P𝑦P) ∧ ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R ) = [⟨((𝑥 ·P (𝑧 +P 𝑣)) +P (𝑦 ·P (𝑤 +P 𝑢))), ((𝑥 ·P (𝑤 +P 𝑢)) +P (𝑦 ·P (𝑧 +P 𝑣)))⟩] ~R )
4 mulsrpr 7193 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
5 mulsrpr 7193 . 2 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)), ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))⟩] ~R )
6 addsrpr 7192 . 2 (((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) ∧ (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P ∧ ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)) → ([⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R +R [⟨((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)), ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))⟩] ~R ) = [⟨(((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))), (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)))⟩] ~R )
7 addclpr 6997 . . . 4 ((𝑧P𝑣P) → (𝑧 +P 𝑣) ∈ P)
87ad2ant2r 493 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑧 +P 𝑣) ∈ P)
9 addclpr 6997 . . . 4 ((𝑤P𝑢P) → (𝑤 +P 𝑢) ∈ P)
109ad2ant2l 492 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 +P 𝑢) ∈ P)
118, 10jca 300 . 2 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P))
12 mulclpr 7032 . . . . 5 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
1312ad2ant2r 493 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑧) ∈ P)
14 mulclpr 7032 . . . . 5 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
1514ad2ant2l 492 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑤) ∈ P)
16 addclpr 6997 . . . 4 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
1713, 15, 16syl2anc 403 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
18 mulclpr 7032 . . . . 5 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
1918ad2ant2rl 495 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑤) ∈ P)
20 mulclpr 7032 . . . . 5 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
2120ad2ant2lr 494 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑧) ∈ P)
22 addclpr 6997 . . . 4 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
2319, 21, 22syl2anc 403 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
2417, 23jca 300 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P))
25 mulclpr 7032 . . . . 5 ((𝑥P𝑣P) → (𝑥 ·P 𝑣) ∈ P)
2625ad2ant2r 493 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑣) ∈ P)
27 mulclpr 7032 . . . . 5 ((𝑦P𝑢P) → (𝑦 ·P 𝑢) ∈ P)
2827ad2ant2l 492 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑢) ∈ P)
29 addclpr 6997 . . . 4 (((𝑥 ·P 𝑣) ∈ P ∧ (𝑦 ·P 𝑢) ∈ P) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
3026, 28, 29syl2anc 403 . . 3 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
31 mulclpr 7032 . . . . 5 ((𝑥P𝑢P) → (𝑥 ·P 𝑢) ∈ P)
3231ad2ant2rl 495 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑢) ∈ P)
33 mulclpr 7032 . . . . 5 ((𝑦P𝑣P) → (𝑦 ·P 𝑣) ∈ P)
3433ad2ant2lr 494 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑣) ∈ P)
35 addclpr 6997 . . . 4 (((𝑥 ·P 𝑢) ∈ P ∧ (𝑦 ·P 𝑣) ∈ P) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3632, 34, 35syl2anc 403 . . 3 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3730, 36jca 300 . 2 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P ∧ ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P))
38 simp1l 963 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑥P)
39 simp2l 965 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑧P)
40 simp3l 967 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑣P)
41 distrprg 7048 . . . . 5 ((𝑥P𝑧P𝑣P) → (𝑥 ·P (𝑧 +P 𝑣)) = ((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)))
4238, 39, 40, 41syl3anc 1170 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P (𝑧 +P 𝑣)) = ((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)))
43 simp1r 964 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑦P)
44 simp2r 966 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑤P)
45 simp3r 968 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑢P)
46 distrprg 7048 . . . . 5 ((𝑦P𝑤P𝑢P) → (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
4743, 44, 45, 46syl3anc 1170 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
4842, 47oveq12d 5607 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P (𝑧 +P 𝑣)) +P (𝑦 ·P (𝑤 +P 𝑢))) = (((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)) +P ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢))))
4938, 39, 12syl2anc 403 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑧) ∈ P)
5038, 40, 25syl2anc 403 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑣) ∈ P)
5143, 44, 14syl2anc 403 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑤) ∈ P)
52 addcomprg 7038 . . . . 5 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
5352adantl 271 . . . 4 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
54 addassprg 7039 . . . . 5 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
5554adantl 271 . . . 4 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
5643, 45, 27syl2anc 403 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑢) ∈ P)
57 addclpr 6997 . . . . 5 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
5857adantl 271 . . . 4 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
5949, 50, 51, 53, 55, 56, 58caov4d 5762 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)) +P ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢))) = (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))))
6048, 59eqtrd 2115 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P (𝑧 +P 𝑣)) +P (𝑦 ·P (𝑤 +P 𝑢))) = (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))))
61 distrprg 7048 . . . . 5 ((𝑥P𝑤P𝑢P) → (𝑥 ·P (𝑤 +P 𝑢)) = ((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)))
6238, 44, 45, 61syl3anc 1170 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P (𝑤 +P 𝑢)) = ((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)))
63 distrprg 7048 . . . . 5 ((𝑦P𝑧P𝑣P) → (𝑦 ·P (𝑧 +P 𝑣)) = ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣)))
6443, 39, 40, 63syl3anc 1170 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P (𝑧 +P 𝑣)) = ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣)))
6562, 64oveq12d 5607 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P (𝑤 +P 𝑢)) +P (𝑦 ·P (𝑧 +P 𝑣))) = (((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)) +P ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣))))
6638, 44, 18syl2anc 403 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑤) ∈ P)
6738, 45, 31syl2anc 403 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑢) ∈ P)
6843, 39, 20syl2anc 403 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑧) ∈ P)
6943, 40, 33syl2anc 403 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑣) ∈ P)
7066, 67, 68, 53, 55, 69, 58caov4d 5762 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)) +P ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣))) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))))
7165, 70eqtrd 2115 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P (𝑤 +P 𝑢)) +P (𝑦 ·P (𝑧 +P 𝑣))) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))))
721, 2, 3, 4, 5, 6, 11, 24, 37, 60, 71ecovidi 6332 1 ((𝐴R𝐵R𝐶R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920   = wceq 1285  wcel 1434  (class class class)co 5589  Pcnp 6751   +P cpp 6753   ·P cmp 6754   ~R cer 6756  Rcnr 6757   +R cplr 6761   ·R cmr 6762
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4079  df-id 4083  df-po 4086  df-iso 4087  df-iord 4156  df-on 4158  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-1st 5844  df-2nd 5845  df-recs 6000  df-irdg 6065  df-1o 6111  df-2o 6112  df-oadd 6115  df-omul 6116  df-er 6220  df-ec 6222  df-qs 6226  df-ni 6764  df-pli 6765  df-mi 6766  df-lti 6767  df-plpq 6804  df-mpq 6805  df-enq 6807  df-nqqs 6808  df-plqqs 6809  df-mqqs 6810  df-1nqqs 6811  df-rq 6812  df-ltnqqs 6813  df-enq0 6884  df-nq0 6885  df-0nq0 6886  df-plq0 6887  df-mq0 6888  df-inp 6926  df-iplp 6928  df-imp 6929  df-enr 7173  df-nr 7174  df-plr 7175  df-mr 7176
This theorem is referenced by:  pn0sr  7218  axmulass  7309  axdistr  7310
  Copyright terms: Public domain W3C validator