![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcan2ad | GIF version |
Description: Cancelling a term on the right-hand side of a sum in an equality. Consequence of addcan2d 8155. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
addcand.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
addcan2ad.4 | ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐶)) |
Ref | Expression |
---|---|
addcan2ad | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcan2ad.4 | . 2 ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐶)) | |
2 | addcand.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | addcand.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | addcand.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | 2, 3, 4 | addcan2d 8155 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
6 | 1, 5 | mpbid 147 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 (class class class)co 5888 ℂcc 7822 + caddc 7827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-resscn 7916 ax-1cn 7917 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-addcom 7924 ax-addass 7926 ax-distr 7928 ax-i2m1 7929 ax-0id 7932 ax-rnegex 7933 ax-cnre 7935 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-iota 5190 df-fv 5236 df-ov 5891 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |