Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcan2ad | GIF version |
Description: Cancelling a term on the right-hand side of a sum in an equality. Consequence of addcan2d 8083. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
addcand.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
addcan2ad.4 | ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐶)) |
Ref | Expression |
---|---|
addcan2ad | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcan2ad.4 | . 2 ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐶)) | |
2 | addcand.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | addcand.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | addcand.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | 2, 3, 4 | addcan2d 8083 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
6 | 1, 5 | mpbid 146 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 + caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |