![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2exp11 | GIF version |
Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
Ref | Expression |
---|---|
2exp11 | ⊢ (2↑;11) = ;;;2048 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8p3e11 9534 | . . . . 5 ⊢ (8 + 3) = ;11 | |
2 | 1 | eqcomi 2200 | . . . 4 ⊢ ;11 = (8 + 3) |
3 | 2 | oveq2i 5933 | . . 3 ⊢ (2↑;11) = (2↑(8 + 3)) |
4 | 2cn 9058 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | 8nn0 9269 | . . . 4 ⊢ 8 ∈ ℕ0 | |
6 | 3nn0 9264 | . . . 4 ⊢ 3 ∈ ℕ0 | |
7 | expadd 10658 | . . . 4 ⊢ ((2 ∈ ℂ ∧ 8 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (2↑(8 + 3)) = ((2↑8) · (2↑3))) | |
8 | 4, 5, 6, 7 | mp3an 1348 | . . 3 ⊢ (2↑(8 + 3)) = ((2↑8) · (2↑3)) |
9 | 3, 8 | eqtri 2217 | . 2 ⊢ (2↑;11) = ((2↑8) · (2↑3)) |
10 | 2exp8 12580 | . . . 4 ⊢ (2↑8) = ;;256 | |
11 | cu2 10715 | . . . 4 ⊢ (2↑3) = 8 | |
12 | 10, 11 | oveq12i 5934 | . . 3 ⊢ ((2↑8) · (2↑3)) = (;;256 · 8) |
13 | 2nn0 9263 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
14 | 5nn0 9266 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
15 | 13, 14 | deccl 9468 | . . . 4 ⊢ ;25 ∈ ℕ0 |
16 | 6nn0 9267 | . . . 4 ⊢ 6 ∈ ℕ0 | |
17 | eqid 2196 | . . . 4 ⊢ ;;256 = ;;256 | |
18 | 4nn0 9265 | . . . 4 ⊢ 4 ∈ ℕ0 | |
19 | 0nn0 9261 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
20 | 13, 19 | deccl 9468 | . . . . 5 ⊢ ;20 ∈ ℕ0 |
21 | eqid 2196 | . . . . . 6 ⊢ ;25 = ;25 | |
22 | 1nn0 9262 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
23 | 8cn 9073 | . . . . . . . 8 ⊢ 8 ∈ ℂ | |
24 | 8t2e16 9568 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
25 | 23, 4, 24 | mulcomli 8031 | . . . . . . 7 ⊢ (2 · 8) = ;16 |
26 | 1p1e2 9104 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
27 | 6p4e10 9525 | . . . . . . 7 ⊢ (6 + 4) = ;10 | |
28 | 22, 16, 18, 25, 26, 19, 27 | decaddci 9514 | . . . . . 6 ⊢ ((2 · 8) + 4) = ;20 |
29 | 5cn 9067 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
30 | 8t5e40 9571 | . . . . . . 7 ⊢ (8 · 5) = ;40 | |
31 | 23, 29, 30 | mulcomli 8031 | . . . . . 6 ⊢ (5 · 8) = ;40 |
32 | 5, 13, 14, 21, 19, 18, 28, 31 | decmul1c 9518 | . . . . 5 ⊢ (;25 · 8) = ;;200 |
33 | 4cn 9065 | . . . . . 6 ⊢ 4 ∈ ℂ | |
34 | 33 | addlidi 8167 | . . . . 5 ⊢ (0 + 4) = 4 |
35 | 20, 19, 18, 32, 34 | decaddi 9513 | . . . 4 ⊢ ((;25 · 8) + 4) = ;;204 |
36 | 6cn 9069 | . . . . 5 ⊢ 6 ∈ ℂ | |
37 | 8t6e48 9572 | . . . . 5 ⊢ (8 · 6) = ;48 | |
38 | 23, 36, 37 | mulcomli 8031 | . . . 4 ⊢ (6 · 8) = ;48 |
39 | 5, 15, 16, 17, 5, 18, 35, 38 | decmul1c 9518 | . . 3 ⊢ (;;256 · 8) = ;;;2048 |
40 | 12, 39 | eqtri 2217 | . 2 ⊢ ((2↑8) · (2↑3)) = ;;;2048 |
41 | 9, 40 | eqtri 2217 | 1 ⊢ (2↑;11) = ;;;2048 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7875 0cc0 7877 1c1 7878 + caddc 7880 · cmul 7882 2c2 9038 3c3 9039 4c4 9040 5c5 9041 6c6 9042 8c8 9044 ℕ0cn0 9246 ;cdc 9454 ↑cexp 10615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-pre-mulext 7995 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-ap 8606 df-div 8697 df-inn 8988 df-2 9046 df-3 9047 df-4 9048 df-5 9049 df-6 9050 df-7 9051 df-8 9052 df-9 9053 df-n0 9247 df-z 9324 df-dec 9455 df-uz 9599 df-seqfrec 10525 df-exp 10616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |