| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exp11 | GIF version | ||
| Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
| Ref | Expression |
|---|---|
| 2exp11 | ⊢ (2↑;11) = ;;;2048 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8p3e11 9591 | . . . . 5 ⊢ (8 + 3) = ;11 | |
| 2 | 1 | eqcomi 2210 | . . . 4 ⊢ ;11 = (8 + 3) |
| 3 | 2 | oveq2i 5962 | . . 3 ⊢ (2↑;11) = (2↑(8 + 3)) |
| 4 | 2cn 9114 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | 8nn0 9325 | . . . 4 ⊢ 8 ∈ ℕ0 | |
| 6 | 3nn0 9320 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 7 | expadd 10733 | . . . 4 ⊢ ((2 ∈ ℂ ∧ 8 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (2↑(8 + 3)) = ((2↑8) · (2↑3))) | |
| 8 | 4, 5, 6, 7 | mp3an 1350 | . . 3 ⊢ (2↑(8 + 3)) = ((2↑8) · (2↑3)) |
| 9 | 3, 8 | eqtri 2227 | . 2 ⊢ (2↑;11) = ((2↑8) · (2↑3)) |
| 10 | 2exp8 12802 | . . . 4 ⊢ (2↑8) = ;;256 | |
| 11 | cu2 10790 | . . . 4 ⊢ (2↑3) = 8 | |
| 12 | 10, 11 | oveq12i 5963 | . . 3 ⊢ ((2↑8) · (2↑3)) = (;;256 · 8) |
| 13 | 2nn0 9319 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 14 | 5nn0 9322 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 15 | 13, 14 | deccl 9525 | . . . 4 ⊢ ;25 ∈ ℕ0 |
| 16 | 6nn0 9323 | . . . 4 ⊢ 6 ∈ ℕ0 | |
| 17 | eqid 2206 | . . . 4 ⊢ ;;256 = ;;256 | |
| 18 | 4nn0 9321 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 19 | 0nn0 9317 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 20 | 13, 19 | deccl 9525 | . . . . 5 ⊢ ;20 ∈ ℕ0 |
| 21 | eqid 2206 | . . . . . 6 ⊢ ;25 = ;25 | |
| 22 | 1nn0 9318 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 23 | 8cn 9129 | . . . . . . . 8 ⊢ 8 ∈ ℂ | |
| 24 | 8t2e16 9625 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
| 25 | 23, 4, 24 | mulcomli 8086 | . . . . . . 7 ⊢ (2 · 8) = ;16 |
| 26 | 1p1e2 9160 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 27 | 6p4e10 9582 | . . . . . . 7 ⊢ (6 + 4) = ;10 | |
| 28 | 22, 16, 18, 25, 26, 19, 27 | decaddci 9571 | . . . . . 6 ⊢ ((2 · 8) + 4) = ;20 |
| 29 | 5cn 9123 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
| 30 | 8t5e40 9628 | . . . . . . 7 ⊢ (8 · 5) = ;40 | |
| 31 | 23, 29, 30 | mulcomli 8086 | . . . . . 6 ⊢ (5 · 8) = ;40 |
| 32 | 5, 13, 14, 21, 19, 18, 28, 31 | decmul1c 9575 | . . . . 5 ⊢ (;25 · 8) = ;;200 |
| 33 | 4cn 9121 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 34 | 33 | addlidi 8222 | . . . . 5 ⊢ (0 + 4) = 4 |
| 35 | 20, 19, 18, 32, 34 | decaddi 9570 | . . . 4 ⊢ ((;25 · 8) + 4) = ;;204 |
| 36 | 6cn 9125 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 37 | 8t6e48 9629 | . . . . 5 ⊢ (8 · 6) = ;48 | |
| 38 | 23, 36, 37 | mulcomli 8086 | . . . 4 ⊢ (6 · 8) = ;48 |
| 39 | 5, 15, 16, 17, 5, 18, 35, 38 | decmul1c 9575 | . . 3 ⊢ (;;256 · 8) = ;;;2048 |
| 40 | 12, 39 | eqtri 2227 | . 2 ⊢ ((2↑8) · (2↑3)) = ;;;2048 |
| 41 | 9, 40 | eqtri 2227 | 1 ⊢ (2↑;11) = ;;;2048 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 0cc0 7932 1c1 7933 + caddc 7935 · cmul 7937 2c2 9094 3c3 9095 4c4 9096 5c5 9097 6c6 9098 8c8 9100 ℕ0cn0 9302 ;cdc 9511 ↑cexp 10690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-uz 9656 df-seqfrec 10600 df-exp 10691 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |