| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exp11 | GIF version | ||
| Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
| Ref | Expression |
|---|---|
| 2exp11 | ⊢ (2↑;11) = ;;;2048 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8p3e11 9666 | . . . . 5 ⊢ (8 + 3) = ;11 | |
| 2 | 1 | eqcomi 2233 | . . . 4 ⊢ ;11 = (8 + 3) |
| 3 | 2 | oveq2i 6018 | . . 3 ⊢ (2↑;11) = (2↑(8 + 3)) |
| 4 | 2cn 9189 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | 8nn0 9400 | . . . 4 ⊢ 8 ∈ ℕ0 | |
| 6 | 3nn0 9395 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 7 | expadd 10811 | . . . 4 ⊢ ((2 ∈ ℂ ∧ 8 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (2↑(8 + 3)) = ((2↑8) · (2↑3))) | |
| 8 | 4, 5, 6, 7 | mp3an 1371 | . . 3 ⊢ (2↑(8 + 3)) = ((2↑8) · (2↑3)) |
| 9 | 3, 8 | eqtri 2250 | . 2 ⊢ (2↑;11) = ((2↑8) · (2↑3)) |
| 10 | 2exp8 12966 | . . . 4 ⊢ (2↑8) = ;;256 | |
| 11 | cu2 10868 | . . . 4 ⊢ (2↑3) = 8 | |
| 12 | 10, 11 | oveq12i 6019 | . . 3 ⊢ ((2↑8) · (2↑3)) = (;;256 · 8) |
| 13 | 2nn0 9394 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 14 | 5nn0 9397 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 15 | 13, 14 | deccl 9600 | . . . 4 ⊢ ;25 ∈ ℕ0 |
| 16 | 6nn0 9398 | . . . 4 ⊢ 6 ∈ ℕ0 | |
| 17 | eqid 2229 | . . . 4 ⊢ ;;256 = ;;256 | |
| 18 | 4nn0 9396 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 19 | 0nn0 9392 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 20 | 13, 19 | deccl 9600 | . . . . 5 ⊢ ;20 ∈ ℕ0 |
| 21 | eqid 2229 | . . . . . 6 ⊢ ;25 = ;25 | |
| 22 | 1nn0 9393 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 23 | 8cn 9204 | . . . . . . . 8 ⊢ 8 ∈ ℂ | |
| 24 | 8t2e16 9700 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
| 25 | 23, 4, 24 | mulcomli 8161 | . . . . . . 7 ⊢ (2 · 8) = ;16 |
| 26 | 1p1e2 9235 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 27 | 6p4e10 9657 | . . . . . . 7 ⊢ (6 + 4) = ;10 | |
| 28 | 22, 16, 18, 25, 26, 19, 27 | decaddci 9646 | . . . . . 6 ⊢ ((2 · 8) + 4) = ;20 |
| 29 | 5cn 9198 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
| 30 | 8t5e40 9703 | . . . . . . 7 ⊢ (8 · 5) = ;40 | |
| 31 | 23, 29, 30 | mulcomli 8161 | . . . . . 6 ⊢ (5 · 8) = ;40 |
| 32 | 5, 13, 14, 21, 19, 18, 28, 31 | decmul1c 9650 | . . . . 5 ⊢ (;25 · 8) = ;;200 |
| 33 | 4cn 9196 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 34 | 33 | addlidi 8297 | . . . . 5 ⊢ (0 + 4) = 4 |
| 35 | 20, 19, 18, 32, 34 | decaddi 9645 | . . . 4 ⊢ ((;25 · 8) + 4) = ;;204 |
| 36 | 6cn 9200 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 37 | 8t6e48 9704 | . . . . 5 ⊢ (8 · 6) = ;48 | |
| 38 | 23, 36, 37 | mulcomli 8161 | . . . 4 ⊢ (6 · 8) = ;48 |
| 39 | 5, 15, 16, 17, 5, 18, 35, 38 | decmul1c 9650 | . . 3 ⊢ (;;256 · 8) = ;;;2048 |
| 40 | 12, 39 | eqtri 2250 | . 2 ⊢ ((2↑8) · (2↑3)) = ;;;2048 |
| 41 | 9, 40 | eqtri 2250 | 1 ⊢ (2↑;11) = ;;;2048 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 0cc0 8007 1c1 8008 + caddc 8010 · cmul 8012 2c2 9169 3c3 9170 4c4 9171 5c5 9172 6c6 9173 8c8 9175 ℕ0cn0 9377 ;cdc 9586 ↑cexp 10768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-seqfrec 10678 df-exp 10769 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |