| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exp11 | GIF version | ||
| Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
| Ref | Expression |
|---|---|
| 2exp11 | ⊢ (2↑;11) = ;;;2048 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8p3e11 9554 | . . . . 5 ⊢ (8 + 3) = ;11 | |
| 2 | 1 | eqcomi 2200 | . . . 4 ⊢ ;11 = (8 + 3) |
| 3 | 2 | oveq2i 5936 | . . 3 ⊢ (2↑;11) = (2↑(8 + 3)) |
| 4 | 2cn 9078 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | 8nn0 9289 | . . . 4 ⊢ 8 ∈ ℕ0 | |
| 6 | 3nn0 9284 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 7 | expadd 10690 | . . . 4 ⊢ ((2 ∈ ℂ ∧ 8 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (2↑(8 + 3)) = ((2↑8) · (2↑3))) | |
| 8 | 4, 5, 6, 7 | mp3an 1348 | . . 3 ⊢ (2↑(8 + 3)) = ((2↑8) · (2↑3)) |
| 9 | 3, 8 | eqtri 2217 | . 2 ⊢ (2↑;11) = ((2↑8) · (2↑3)) |
| 10 | 2exp8 12629 | . . . 4 ⊢ (2↑8) = ;;256 | |
| 11 | cu2 10747 | . . . 4 ⊢ (2↑3) = 8 | |
| 12 | 10, 11 | oveq12i 5937 | . . 3 ⊢ ((2↑8) · (2↑3)) = (;;256 · 8) |
| 13 | 2nn0 9283 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 14 | 5nn0 9286 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 15 | 13, 14 | deccl 9488 | . . . 4 ⊢ ;25 ∈ ℕ0 |
| 16 | 6nn0 9287 | . . . 4 ⊢ 6 ∈ ℕ0 | |
| 17 | eqid 2196 | . . . 4 ⊢ ;;256 = ;;256 | |
| 18 | 4nn0 9285 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 19 | 0nn0 9281 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 20 | 13, 19 | deccl 9488 | . . . . 5 ⊢ ;20 ∈ ℕ0 |
| 21 | eqid 2196 | . . . . . 6 ⊢ ;25 = ;25 | |
| 22 | 1nn0 9282 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 23 | 8cn 9093 | . . . . . . . 8 ⊢ 8 ∈ ℂ | |
| 24 | 8t2e16 9588 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
| 25 | 23, 4, 24 | mulcomli 8050 | . . . . . . 7 ⊢ (2 · 8) = ;16 |
| 26 | 1p1e2 9124 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 27 | 6p4e10 9545 | . . . . . . 7 ⊢ (6 + 4) = ;10 | |
| 28 | 22, 16, 18, 25, 26, 19, 27 | decaddci 9534 | . . . . . 6 ⊢ ((2 · 8) + 4) = ;20 |
| 29 | 5cn 9087 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
| 30 | 8t5e40 9591 | . . . . . . 7 ⊢ (8 · 5) = ;40 | |
| 31 | 23, 29, 30 | mulcomli 8050 | . . . . . 6 ⊢ (5 · 8) = ;40 |
| 32 | 5, 13, 14, 21, 19, 18, 28, 31 | decmul1c 9538 | . . . . 5 ⊢ (;25 · 8) = ;;200 |
| 33 | 4cn 9085 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 34 | 33 | addlidi 8186 | . . . . 5 ⊢ (0 + 4) = 4 |
| 35 | 20, 19, 18, 32, 34 | decaddi 9533 | . . . 4 ⊢ ((;25 · 8) + 4) = ;;204 |
| 36 | 6cn 9089 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 37 | 8t6e48 9592 | . . . . 5 ⊢ (8 · 6) = ;48 | |
| 38 | 23, 36, 37 | mulcomli 8050 | . . . 4 ⊢ (6 · 8) = ;48 |
| 39 | 5, 15, 16, 17, 5, 18, 35, 38 | decmul1c 9538 | . . 3 ⊢ (;;256 · 8) = ;;;2048 |
| 40 | 12, 39 | eqtri 2217 | . 2 ⊢ ((2↑8) · (2↑3)) = ;;;2048 |
| 41 | 9, 40 | eqtri 2217 | 1 ⊢ (2↑;11) = ;;;2048 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 0cc0 7896 1c1 7897 + caddc 7899 · cmul 7901 2c2 9058 3c3 9059 4c4 9060 5c5 9061 6c6 9062 8c8 9064 ℕ0cn0 9266 ;cdc 9474 ↑cexp 10647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-dec 9475 df-uz 9619 df-seqfrec 10557 df-exp 10648 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |