| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dec5dvds2 | GIF version | ||
| Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| dec5dvds.1 | ⊢ 𝐴 ∈ ℕ0 |
| dec5dvds.2 | ⊢ 𝐵 ∈ ℕ |
| dec5dvds.3 | ⊢ 𝐵 < 5 |
| dec5dvds2.4 | ⊢ (5 + 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| dec5dvds2 | ⊢ ¬ 5 ∥ ;𝐴𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dec5dvds.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | dec5dvds.2 | . . 3 ⊢ 𝐵 ∈ ℕ | |
| 3 | dec5dvds.3 | . . 3 ⊢ 𝐵 < 5 | |
| 4 | 1, 2, 3 | dec5dvds 12557 | . 2 ⊢ ¬ 5 ∥ ;𝐴𝐵 |
| 5 | 5nn0 9266 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 6 | 5 | nn0zi 9345 | . . . 4 ⊢ 5 ∈ ℤ |
| 7 | 2 | nnnn0i 9254 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 |
| 8 | 1, 7 | deccl 9468 | . . . . 5 ⊢ ;𝐴𝐵 ∈ ℕ0 |
| 9 | 8 | nn0zi 9345 | . . . 4 ⊢ ;𝐴𝐵 ∈ ℤ |
| 10 | dvdsadd 11985 | . . . 4 ⊢ ((5 ∈ ℤ ∧ ;𝐴𝐵 ∈ ℤ) → (5 ∥ ;𝐴𝐵 ↔ 5 ∥ (5 + ;𝐴𝐵))) | |
| 11 | 6, 9, 10 | mp2an 426 | . . 3 ⊢ (5 ∥ ;𝐴𝐵 ↔ 5 ∥ (5 + ;𝐴𝐵)) |
| 12 | 0nn0 9261 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 13 | 5 | dec0h 9475 | . . . . 5 ⊢ 5 = ;05 |
| 14 | eqid 2196 | . . . . 5 ⊢ ;𝐴𝐵 = ;𝐴𝐵 | |
| 15 | 1 | nn0cni 9258 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 16 | 15 | addlidi 8167 | . . . . 5 ⊢ (0 + 𝐴) = 𝐴 |
| 17 | dec5dvds2.4 | . . . . 5 ⊢ (5 + 𝐵) = 𝐶 | |
| 18 | 12, 5, 1, 7, 13, 14, 16, 17 | decadd 9507 | . . . 4 ⊢ (5 + ;𝐴𝐵) = ;𝐴𝐶 |
| 19 | 18 | breq2i 4041 | . . 3 ⊢ (5 ∥ (5 + ;𝐴𝐵) ↔ 5 ∥ ;𝐴𝐶) |
| 20 | 11, 19 | bitri 184 | . 2 ⊢ (5 ∥ ;𝐴𝐵 ↔ 5 ∥ ;𝐴𝐶) |
| 21 | 4, 20 | mtbi 671 | 1 ⊢ ¬ 5 ∥ ;𝐴𝐶 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 0cc0 7877 + caddc 7880 < clt 8059 ℕcn 8987 5c5 9041 ℕ0cn0 9246 ℤcz 9323 ;cdc 9454 ∥ cdvds 11936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-pre-mulext 7995 ax-arch 7996 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-ap 8606 df-div 8697 df-inn 8988 df-2 9046 df-3 9047 df-4 9048 df-5 9049 df-6 9050 df-7 9051 df-8 9052 df-9 9053 df-n0 9247 df-z 9324 df-dec 9455 df-uz 9599 df-q 9691 df-rp 9726 df-fl 10345 df-mod 10400 df-seqfrec 10525 df-exp 10616 df-cj 10992 df-re 10993 df-im 10994 df-rsqrt 11148 df-abs 11149 df-dvds 11937 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |