ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2exp16 GIF version

Theorem 2exp16 12633
Description: Two to the sixteenth power is 65536. (Contributed by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
2exp16 (2↑16) = 65536

Proof of Theorem 2exp16
StepHypRef Expression
1 2nn0 9285 . 2 2 ∈ ℕ0
2 8nn0 9291 . 2 8 ∈ ℕ0
3 8cn 9095 . . 3 8 ∈ ℂ
4 2cn 9080 . . 3 2 ∈ ℂ
5 8t2e16 9590 . . 3 (8 · 2) = 16
63, 4, 5mulcomli 8052 . 2 (2 · 8) = 16
7 2exp8 12631 . 2 (2↑8) = 256
8 5nn0 9288 . . . . 5 5 ∈ ℕ0
91, 8deccl 9490 . . . 4 25 ∈ ℕ0
10 6nn0 9289 . . . 4 6 ∈ ℕ0
119, 10deccl 9490 . . 3 256 ∈ ℕ0
12 eqid 2196 . . 3 256 = 256
13 1nn0 9284 . . . . 5 1 ∈ ℕ0
1413, 8deccl 9490 . . . 4 15 ∈ ℕ0
15 3nn0 9286 . . . 4 3 ∈ ℕ0
1614, 15deccl 9490 . . 3 153 ∈ ℕ0
17 eqid 2196 . . . 4 25 = 25
18 eqid 2196 . . . 4 153 = 153
1913, 1deccl 9490 . . . . 5 12 ∈ ℕ0
2019, 2deccl 9490 . . . 4 128 ∈ ℕ0
21 4nn0 9287 . . . . . 6 4 ∈ ℕ0
2213, 21deccl 9490 . . . . 5 14 ∈ ℕ0
23 eqid 2196 . . . . . 6 15 = 15
24 eqid 2196 . . . . . 6 128 = 128
25 0nn0 9283 . . . . . . . 8 0 ∈ ℕ0
2613dec0h 9497 . . . . . . . 8 1 = 01
27 eqid 2196 . . . . . . . 8 12 = 12
28 0p1e1 9123 . . . . . . . 8 (0 + 1) = 1
29 1p2e3 9144 . . . . . . . 8 (1 + 2) = 3
3025, 13, 13, 1, 26, 27, 28, 29decadd 9529 . . . . . . 7 (1 + 12) = 13
31 3p1e4 9145 . . . . . . 7 (3 + 1) = 4
3213, 15, 13, 30, 31decaddi 9535 . . . . . 6 ((1 + 12) + 1) = 14
33 5cn 9089 . . . . . . 7 5 ∈ ℂ
34 8p5e13 9558 . . . . . . 7 (8 + 5) = 13
353, 33, 34addcomli 8190 . . . . . 6 (5 + 8) = 13
3613, 8, 19, 2, 23, 24, 32, 15, 35decaddc 9530 . . . . 5 (15 + 128) = 143
37 eqid 2196 . . . . . . 7 14 = 14
38 4p1e5 9146 . . . . . . 7 (4 + 1) = 5
3913, 21, 13, 37, 38decaddi 9535 . . . . . 6 (14 + 1) = 15
40 2t2e4 9164 . . . . . . . 8 (2 · 2) = 4
41 1p1e2 9126 . . . . . . . 8 (1 + 1) = 2
4240, 41oveq12i 5937 . . . . . . 7 ((2 · 2) + (1 + 1)) = (4 + 2)
43 4p2e6 9153 . . . . . . 7 (4 + 2) = 6
4442, 43eqtri 2217 . . . . . 6 ((2 · 2) + (1 + 1)) = 6
45 5t2e10 9575 . . . . . . 7 (5 · 2) = 10
4633addlidi 8188 . . . . . . 7 (0 + 5) = 5
4713, 25, 8, 45, 46decaddi 9535 . . . . . 6 ((5 · 2) + 5) = 15
481, 8, 13, 8, 17, 39, 1, 8, 13, 44, 47decmac 9527 . . . . 5 ((25 · 2) + (14 + 1)) = 65
49 6t2e12 9579 . . . . . 6 (6 · 2) = 12
50 3cn 9084 . . . . . . 7 3 ∈ ℂ
51 3p2e5 9151 . . . . . . 7 (3 + 2) = 5
5250, 4, 51addcomli 8190 . . . . . 6 (2 + 3) = 5
5313, 1, 15, 49, 52decaddi 9535 . . . . 5 ((6 · 2) + 3) = 15
549, 10, 22, 15, 12, 36, 1, 8, 13, 48, 53decmac 9527 . . . 4 ((256 · 2) + (15 + 128)) = 655
5515dec0h 9497 . . . . 5 3 = 03
5650addlidi 8188 . . . . . . 7 (0 + 3) = 3
5756, 55eqtri 2217 . . . . . 6 (0 + 3) = 03
584addlidi 8188 . . . . . . . 8 (0 + 2) = 2
5958oveq2i 5936 . . . . . . 7 ((2 · 5) + (0 + 2)) = ((2 · 5) + 2)
6033, 4, 45mulcomli 8052 . . . . . . . 8 (2 · 5) = 10
6113, 25, 1, 60, 58decaddi 9535 . . . . . . 7 ((2 · 5) + 2) = 12
6259, 61eqtri 2217 . . . . . 6 ((2 · 5) + (0 + 2)) = 12
63 5t5e25 9578 . . . . . . 7 (5 · 5) = 25
64 5p3e8 9157 . . . . . . 7 (5 + 3) = 8
651, 8, 15, 63, 64decaddi 9535 . . . . . 6 ((5 · 5) + 3) = 28
661, 8, 25, 15, 17, 57, 8, 2, 1, 62, 65decmac 9527 . . . . 5 ((25 · 5) + (0 + 3)) = 128
67 6t5e30 9582 . . . . . 6 (6 · 5) = 30
6815, 25, 15, 67, 56decaddi 9535 . . . . 5 ((6 · 5) + 3) = 33
699, 10, 25, 15, 12, 55, 8, 15, 15, 66, 68decmac 9527 . . . 4 ((256 · 5) + 3) = 1283
701, 8, 14, 15, 17, 18, 11, 15, 20, 54, 69decma2c 9528 . . 3 ((256 · 25) + 153) = 6553
71 6cn 9091 . . . . . . 7 6 ∈ ℂ
7271, 4, 49mulcomli 8052 . . . . . 6 (2 · 6) = 12
7313, 1, 15, 72, 52decaddi 9535 . . . . 5 ((2 · 6) + 3) = 15
7471, 33, 67mulcomli 8052 . . . . . 6 (5 · 6) = 30
7515, 25, 15, 74, 56decaddi 9535 . . . . 5 ((5 · 6) + 3) = 33
761, 8, 15, 17, 10, 15, 15, 73, 75decrmac 9533 . . . 4 ((25 · 6) + 3) = 153
77 6t6e36 9583 . . . 4 (6 · 6) = 36
7810, 9, 10, 12, 10, 15, 76, 77decmul1c 9540 . . 3 (256 · 6) = 1536
7911, 9, 10, 12, 10, 16, 70, 78decmul2c 9541 . 2 (256 · 256) = 65536
801, 2, 6, 7, 79numexp2x 12621 1 (2↑16) = 65536
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5925  0cc0 7898  1c1 7899   + caddc 7901   · cmul 7903  2c2 9060  3c3 9061  4c4 9062  5c5 9063  6c6 9064  8c8 9066  cdc 9476  cexp 10649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-uz 9621  df-seqfrec 10559  df-exp 10650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator