ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2exp16 GIF version

Theorem 2exp16 12926
Description: Two to the sixteenth power is 65536. (Contributed by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
2exp16 (2↑16) = 65536

Proof of Theorem 2exp16
StepHypRef Expression
1 2nn0 9354 . 2 2 ∈ ℕ0
2 8nn0 9360 . 2 8 ∈ ℕ0
3 8cn 9164 . . 3 8 ∈ ℂ
4 2cn 9149 . . 3 2 ∈ ℂ
5 8t2e16 9660 . . 3 (8 · 2) = 16
63, 4, 5mulcomli 8121 . 2 (2 · 8) = 16
7 2exp8 12924 . 2 (2↑8) = 256
8 5nn0 9357 . . . . 5 5 ∈ ℕ0
91, 8deccl 9560 . . . 4 25 ∈ ℕ0
10 6nn0 9358 . . . 4 6 ∈ ℕ0
119, 10deccl 9560 . . 3 256 ∈ ℕ0
12 eqid 2209 . . 3 256 = 256
13 1nn0 9353 . . . . 5 1 ∈ ℕ0
1413, 8deccl 9560 . . . 4 15 ∈ ℕ0
15 3nn0 9355 . . . 4 3 ∈ ℕ0
1614, 15deccl 9560 . . 3 153 ∈ ℕ0
17 eqid 2209 . . . 4 25 = 25
18 eqid 2209 . . . 4 153 = 153
1913, 1deccl 9560 . . . . 5 12 ∈ ℕ0
2019, 2deccl 9560 . . . 4 128 ∈ ℕ0
21 4nn0 9356 . . . . . 6 4 ∈ ℕ0
2213, 21deccl 9560 . . . . 5 14 ∈ ℕ0
23 eqid 2209 . . . . . 6 15 = 15
24 eqid 2209 . . . . . 6 128 = 128
25 0nn0 9352 . . . . . . . 8 0 ∈ ℕ0
2613dec0h 9567 . . . . . . . 8 1 = 01
27 eqid 2209 . . . . . . . 8 12 = 12
28 0p1e1 9192 . . . . . . . 8 (0 + 1) = 1
29 1p2e3 9213 . . . . . . . 8 (1 + 2) = 3
3025, 13, 13, 1, 26, 27, 28, 29decadd 9599 . . . . . . 7 (1 + 12) = 13
31 3p1e4 9214 . . . . . . 7 (3 + 1) = 4
3213, 15, 13, 30, 31decaddi 9605 . . . . . 6 ((1 + 12) + 1) = 14
33 5cn 9158 . . . . . . 7 5 ∈ ℂ
34 8p5e13 9628 . . . . . . 7 (8 + 5) = 13
353, 33, 34addcomli 8259 . . . . . 6 (5 + 8) = 13
3613, 8, 19, 2, 23, 24, 32, 15, 35decaddc 9600 . . . . 5 (15 + 128) = 143
37 eqid 2209 . . . . . . 7 14 = 14
38 4p1e5 9215 . . . . . . 7 (4 + 1) = 5
3913, 21, 13, 37, 38decaddi 9605 . . . . . 6 (14 + 1) = 15
40 2t2e4 9233 . . . . . . . 8 (2 · 2) = 4
41 1p1e2 9195 . . . . . . . 8 (1 + 1) = 2
4240, 41oveq12i 5986 . . . . . . 7 ((2 · 2) + (1 + 1)) = (4 + 2)
43 4p2e6 9222 . . . . . . 7 (4 + 2) = 6
4442, 43eqtri 2230 . . . . . 6 ((2 · 2) + (1 + 1)) = 6
45 5t2e10 9645 . . . . . . 7 (5 · 2) = 10
4633addlidi 8257 . . . . . . 7 (0 + 5) = 5
4713, 25, 8, 45, 46decaddi 9605 . . . . . 6 ((5 · 2) + 5) = 15
481, 8, 13, 8, 17, 39, 1, 8, 13, 44, 47decmac 9597 . . . . 5 ((25 · 2) + (14 + 1)) = 65
49 6t2e12 9649 . . . . . 6 (6 · 2) = 12
50 3cn 9153 . . . . . . 7 3 ∈ ℂ
51 3p2e5 9220 . . . . . . 7 (3 + 2) = 5
5250, 4, 51addcomli 8259 . . . . . 6 (2 + 3) = 5
5313, 1, 15, 49, 52decaddi 9605 . . . . 5 ((6 · 2) + 3) = 15
549, 10, 22, 15, 12, 36, 1, 8, 13, 48, 53decmac 9597 . . . 4 ((256 · 2) + (15 + 128)) = 655
5515dec0h 9567 . . . . 5 3 = 03
5650addlidi 8257 . . . . . . 7 (0 + 3) = 3
5756, 55eqtri 2230 . . . . . 6 (0 + 3) = 03
584addlidi 8257 . . . . . . . 8 (0 + 2) = 2
5958oveq2i 5985 . . . . . . 7 ((2 · 5) + (0 + 2)) = ((2 · 5) + 2)
6033, 4, 45mulcomli 8121 . . . . . . . 8 (2 · 5) = 10
6113, 25, 1, 60, 58decaddi 9605 . . . . . . 7 ((2 · 5) + 2) = 12
6259, 61eqtri 2230 . . . . . 6 ((2 · 5) + (0 + 2)) = 12
63 5t5e25 9648 . . . . . . 7 (5 · 5) = 25
64 5p3e8 9226 . . . . . . 7 (5 + 3) = 8
651, 8, 15, 63, 64decaddi 9605 . . . . . 6 ((5 · 5) + 3) = 28
661, 8, 25, 15, 17, 57, 8, 2, 1, 62, 65decmac 9597 . . . . 5 ((25 · 5) + (0 + 3)) = 128
67 6t5e30 9652 . . . . . 6 (6 · 5) = 30
6815, 25, 15, 67, 56decaddi 9605 . . . . 5 ((6 · 5) + 3) = 33
699, 10, 25, 15, 12, 55, 8, 15, 15, 66, 68decmac 9597 . . . 4 ((256 · 5) + 3) = 1283
701, 8, 14, 15, 17, 18, 11, 15, 20, 54, 69decma2c 9598 . . 3 ((256 · 25) + 153) = 6553
71 6cn 9160 . . . . . . 7 6 ∈ ℂ
7271, 4, 49mulcomli 8121 . . . . . 6 (2 · 6) = 12
7313, 1, 15, 72, 52decaddi 9605 . . . . 5 ((2 · 6) + 3) = 15
7471, 33, 67mulcomli 8121 . . . . . 6 (5 · 6) = 30
7515, 25, 15, 74, 56decaddi 9605 . . . . 5 ((5 · 6) + 3) = 33
761, 8, 15, 17, 10, 15, 15, 73, 75decrmac 9603 . . . 4 ((25 · 6) + 3) = 153
77 6t6e36 9653 . . . 4 (6 · 6) = 36
7810, 9, 10, 12, 10, 15, 76, 77decmul1c 9610 . . 3 (256 · 6) = 1536
7911, 9, 10, 12, 10, 16, 70, 78decmul2c 9611 . 2 (256 · 256) = 65536
801, 2, 6, 7, 79numexp2x 12914 1 (2↑16) = 65536
Colors of variables: wff set class
Syntax hints:   = wceq 1375  (class class class)co 5974  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972  2c2 9129  3c3 9130  4c4 9131  5c5 9132  6c6 9133  8c8 9135  cdc 9546  cexp 10727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-seqfrec 10637  df-exp 10728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator