ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relssdmrn GIF version

Theorem relssdmrn 5249
Description: A relation is included in the cross product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
relssdmrn (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))

Proof of Theorem relssdmrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 (Rel 𝐴 → Rel 𝐴)
2 19.8a 1636 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
3 19.8a 1636 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
4 opelxp 4749 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴) ↔ (𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴))
5 vex 2802 . . . . . . 7 𝑥 ∈ V
65eldm2 4921 . . . . . 6 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
7 vex 2802 . . . . . . 7 𝑦 ∈ V
87elrn2 4966 . . . . . 6 (𝑦 ∈ ran 𝐴 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
96, 8anbi12i 460 . . . . 5 ((𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴))
104, 9bitri 184 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴))
112, 3, 10sylanbrc 417 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴))
1211a1i 9 . 2 (Rel 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴)))
131, 12relssdv 4811 1 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1538  wcel 2200  wss 3197  cop 3669   × cxp 4717  dom cdm 4719  ran crn 4720  Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730
This theorem is referenced by:  cnvssrndm  5250  cossxp  5251  relrelss  5255  relfld  5257  cnvexg  5266  fssxp  5491  oprabss  6090  resfunexgALT  6253  cofunexg  6254  fnexALT  6256  funexw  6257  erssxp  6703  znleval  14617
  Copyright terms: Public domain W3C validator