ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relssdmrn GIF version

Theorem relssdmrn 5124
Description: A relation is included in the cross product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
relssdmrn (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))

Proof of Theorem relssdmrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 (Rel 𝐴 → Rel 𝐴)
2 19.8a 1578 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
3 19.8a 1578 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
4 opelxp 4634 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴) ↔ (𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴))
5 vex 2729 . . . . . . 7 𝑥 ∈ V
65eldm2 4802 . . . . . 6 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
7 vex 2729 . . . . . . 7 𝑦 ∈ V
87elrn2 4846 . . . . . 6 (𝑦 ∈ ran 𝐴 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
96, 8anbi12i 456 . . . . 5 ((𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴))
104, 9bitri 183 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴))
112, 3, 10sylanbrc 414 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴))
1211a1i 9 . 2 (Rel 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴)))
131, 12relssdv 4696 1 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1480  wcel 2136  wss 3116  cop 3579   × cxp 4602  dom cdm 4604  ran crn 4605  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  cnvssrndm  5125  cossxp  5126  relrelss  5130  relfld  5132  cnvexg  5141  fssxp  5355  oprabss  5928  resfunexgALT  6076  cofunexg  6077  fnexALT  6079  funexw  6080  erssxp  6524
  Copyright terms: Public domain W3C validator