![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relssdmrn | GIF version |
Description: A relation is included in the cross product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
relssdmrn | ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (Rel 𝐴 → Rel 𝐴) | |
2 | 19.8a 1590 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
3 | 19.8a 1590 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
4 | opelxp 4658 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴)) | |
5 | vex 2742 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
6 | 5 | eldm2 4827 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
7 | vex 2742 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
8 | 7 | elrn2 4871 | . . . . . 6 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴) |
9 | 6, 8 | anbi12i 460 | . . . . 5 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴) ↔ (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
10 | 4, 9 | bitri 184 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴) ↔ (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
11 | 2, 3, 10 | sylanbrc 417 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴)) |
12 | 11 | a1i 9 | . 2 ⊢ (Rel 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴))) |
13 | 1, 12 | relssdv 4720 | 1 ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1492 ∈ wcel 2148 ⊆ wss 3131 ⟨cop 3597 × cxp 4626 dom cdm 4628 ran crn 4629 Rel wrel 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 df-dm 4638 df-rn 4639 |
This theorem is referenced by: cnvssrndm 5152 cossxp 5153 relrelss 5157 relfld 5159 cnvexg 5168 fssxp 5385 oprabss 5963 resfunexgALT 6111 cofunexg 6112 fnexALT 6114 funexw 6115 erssxp 6560 |
Copyright terms: Public domain | W3C validator |