![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relssdmrn | GIF version |
Description: A relation is included in the cross product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
relssdmrn | ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (Rel 𝐴 → Rel 𝐴) | |
2 | 19.8a 1527 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) | |
3 | 19.8a 1527 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) | |
4 | opelxp 4467 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴)) | |
5 | vex 2622 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
6 | 5 | eldm2 4634 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
7 | vex 2622 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
8 | 7 | elrn2 4677 | . . . . . 6 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
9 | 6, 8 | anbi12i 448 | . . . . 5 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴)) |
10 | 4, 9 | bitri 182 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴)) |
11 | 2, 3, 10 | sylanbrc 408 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴)) |
12 | 11 | a1i 9 | . 2 ⊢ (Rel 𝐴 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴))) |
13 | 1, 12 | relssdv 4530 | 1 ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∃wex 1426 ∈ wcel 1438 ⊆ wss 2999 〈cop 3449 × cxp 4436 dom cdm 4438 ran crn 4439 Rel wrel 4443 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-br 3846 df-opab 3900 df-xp 4444 df-rel 4445 df-cnv 4446 df-dm 4448 df-rn 4449 |
This theorem is referenced by: cnvssrndm 4952 cossxp 4953 relrelss 4957 relfld 4959 cnvexg 4968 fssxp 5178 oprabss 5734 resfunexgALT 5881 cofunexg 5882 fnexALT 5884 erssxp 6313 |
Copyright terms: Public domain | W3C validator |