ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashssdif GIF version

Theorem fihashssdif 10961
Description: The size of the difference of a finite set and a finite subset is the set's size minus the subset's. (Contributed by Jim Kingdon, 31-May-2022.)
Assertion
Ref Expression
fihashssdif ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) − (♯‘𝐵)))

Proof of Theorem fihashssdif
StepHypRef Expression
1 undiffi 7021 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐴 = (𝐵 ∪ (𝐴𝐵)))
21fveq2d 5579 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐴) = (♯‘(𝐵 ∪ (𝐴𝐵))))
3 simp2 1000 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
4 diffifi 6990 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (𝐴𝐵) ∈ Fin)
5 disjdif 3532 . . . . . 6 (𝐵 ∩ (𝐴𝐵)) = ∅
6 hashun 10948 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ (𝐵 ∩ (𝐴𝐵)) = ∅) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
75, 6mp3an3 1338 . . . . 5 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
83, 4, 7syl2anc 411 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
92, 8eqtr2d 2238 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴))
10 hashcl 10924 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
1110nn0cnd 9349 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
12113ad2ant1 1020 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐴) ∈ ℂ)
13 hashcl 10924 . . . . . 6 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
143, 13syl 14 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐵) ∈ ℕ0)
1514nn0cnd 9349 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐵) ∈ ℂ)
16 hashcl 10924 . . . . . 6 ((𝐴𝐵) ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
174, 16syl 14 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) ∈ ℕ0)
1817nn0cnd 9349 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) ∈ ℂ)
1912, 15, 18subaddd 8400 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
209, 19mpbird 167 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → ((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)))
2120eqcomd 2210 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) − (♯‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1372  wcel 2175  cdif 3162  cun 3163  cin 3164  wss 3165  c0 3459  cfv 5270  (class class class)co 5943  Fincfn 6826  cc 7922   + caddc 7927  cmin 8242  0cn0 9294  chash 10918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-ihash 10919
This theorem is referenced by:  hashdifsn  10962
  Copyright terms: Public domain W3C validator