![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fihashssdif | GIF version |
Description: The size of the difference of a finite set and a finite subset is the set's size minus the subset's. (Contributed by Jim Kingdon, 31-May-2022.) |
Ref | Expression |
---|---|
fihashssdif | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undiffi 6937 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵))) | |
2 | 1 | fveq2d 5531 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐴) = (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵)))) |
3 | simp2 999 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
4 | diffifi 6907 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∖ 𝐵) ∈ Fin) | |
5 | disjdif 3507 | . . . . . 6 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅ | |
6 | hashun 10798 | . . . . . 6 ⊢ ((𝐵 ∈ Fin ∧ (𝐴 ∖ 𝐵) ∈ Fin ∧ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) | |
7 | 5, 6 | mp3an3 1336 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ (𝐴 ∖ 𝐵) ∈ Fin) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
8 | 3, 4, 7 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
9 | 2, 8 | eqtr2d 2221 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴)) |
10 | hashcl 10774 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
11 | 10 | nn0cnd 9244 | . . . . 5 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ) |
12 | 11 | 3ad2ant1 1019 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐴) ∈ ℂ) |
13 | hashcl 10774 | . . . . . 6 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
14 | 3, 13 | syl 14 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ∈ ℕ0) |
15 | 14 | nn0cnd 9244 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ∈ ℂ) |
16 | hashcl 10774 | . . . . . 6 ⊢ ((𝐴 ∖ 𝐵) ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) ∈ ℕ0) | |
17 | 4, 16 | syl 14 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) ∈ ℕ0) |
18 | 17 | nn0cnd 9244 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) ∈ ℂ) |
19 | 12, 15, 18 | subaddd 8299 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) |
20 | 9, 19 | mpbird 167 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵))) |
21 | 20 | eqcomd 2193 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 ∖ cdif 3138 ∪ cun 3139 ∩ cin 3140 ⊆ wss 3141 ∅c0 3434 ‘cfv 5228 (class class class)co 5888 Fincfn 6753 ℂcc 7822 + caddc 7827 − cmin 8141 ℕ0cn0 9189 ♯chash 10768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-addcom 7924 ax-addass 7926 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-0id 7932 ax-rnegex 7933 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-ltadd 7940 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-recs 6319 df-irdg 6384 df-frec 6405 df-1o 6430 df-oadd 6434 df-er 6548 df-en 6754 df-dom 6755 df-fin 6756 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-inn 8933 df-n0 9190 df-z 9267 df-uz 9542 df-ihash 10769 |
This theorem is referenced by: hashdifsn 10812 |
Copyright terms: Public domain | W3C validator |