ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumlessfi GIF version

Theorem fsumlessfi 11468
Description: A shorter sum of nonnegative terms is no greater than a longer one. (Contributed by NM, 26-Dec-2005.) (Revised by Jim Kingdon, 12-Oct-2022.)
Hypotheses
Ref Expression
fsumge0.1 (𝜑𝐴 ∈ Fin)
fsumge0.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fsumge0.3 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fsumless.4 (𝜑𝐶𝐴)
fsumlessfi.c (𝜑𝐶 ∈ Fin)
Assertion
Ref Expression
fsumlessfi (𝜑 → Σ𝑘𝐶 𝐵 ≤ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumlessfi
StepHypRef Expression
1 fsumge0.1 . . . . 5 (𝜑𝐴 ∈ Fin)
2 fsumlessfi.c . . . . 5 (𝜑𝐶 ∈ Fin)
3 fsumless.4 . . . . 5 (𝜑𝐶𝐴)
4 diffifi 6894 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐶 ∈ Fin ∧ 𝐶𝐴) → (𝐴𝐶) ∈ Fin)
51, 2, 3, 4syl3anc 1238 . . . 4 (𝜑 → (𝐴𝐶) ∈ Fin)
6 eldifi 3258 . . . . 5 (𝑘 ∈ (𝐴𝐶) → 𝑘𝐴)
7 fsumge0.2 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
86, 7sylan2 286 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
9 fsumge0.3 . . . . 5 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
106, 9sylan2 286 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐶)) → 0 ≤ 𝐵)
115, 8, 10fsumge0 11467 . . 3 (𝜑 → 0 ≤ Σ𝑘 ∈ (𝐴𝐶)𝐵)
123sselda 3156 . . . . . 6 ((𝜑𝑘𝐶) → 𝑘𝐴)
1312, 7syldan 282 . . . . 5 ((𝜑𝑘𝐶) → 𝐵 ∈ ℝ)
142, 13fsumrecl 11409 . . . 4 (𝜑 → Σ𝑘𝐶 𝐵 ∈ ℝ)
155, 8fsumrecl 11409 . . . 4 (𝜑 → Σ𝑘 ∈ (𝐴𝐶)𝐵 ∈ ℝ)
1614, 15addge01d 8490 . . 3 (𝜑 → (0 ≤ Σ𝑘 ∈ (𝐴𝐶)𝐵 ↔ Σ𝑘𝐶 𝐵 ≤ (Σ𝑘𝐶 𝐵 + Σ𝑘 ∈ (𝐴𝐶)𝐵)))
1711, 16mpbid 147 . 2 (𝜑 → Σ𝑘𝐶 𝐵 ≤ (Σ𝑘𝐶 𝐵 + Σ𝑘 ∈ (𝐴𝐶)𝐵))
18 disjdif 3496 . . . 4 (𝐶 ∩ (𝐴𝐶)) = ∅
1918a1i 9 . . 3 (𝜑 → (𝐶 ∩ (𝐴𝐶)) = ∅)
20 undiffi 6924 . . . 4 ((𝐴 ∈ Fin ∧ 𝐶 ∈ Fin ∧ 𝐶𝐴) → 𝐴 = (𝐶 ∪ (𝐴𝐶)))
211, 2, 3, 20syl3anc 1238 . . 3 (𝜑𝐴 = (𝐶 ∪ (𝐴𝐶)))
227recnd 7986 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2319, 21, 1, 22fsumsplit 11415 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = (Σ𝑘𝐶 𝐵 + Σ𝑘 ∈ (𝐴𝐶)𝐵))
2417, 23breqtrrd 4032 1 (𝜑 → Σ𝑘𝐶 𝐵 ≤ Σ𝑘𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cdif 3127  cun 3128  cin 3129  wss 3130  c0 3423   class class class wbr 4004  (class class class)co 5875  Fincfn 6740  cr 7810  0cc0 7811   + caddc 7814  cle 7993  Σcsu 11361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-ico 9894  df-fz 10009  df-fzo 10143  df-seqfrec 10446  df-exp 10520  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-sumdc 11362
This theorem is referenced by:  fsumge1  11469  fsum00  11470
  Copyright terms: Public domain W3C validator