Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmresexg | GIF version |
Description: The domain of a restriction to a set exists. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
dmresexg | ⊢ (𝐵 ∈ 𝑉 → dom (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 4880 | . 2 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
2 | inex1g 4096 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∩ dom 𝐴) ∈ V) | |
3 | 1, 2 | eqeltrid 2241 | 1 ⊢ (𝐵 ∈ 𝑉 → dom (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2125 Vcvv 2709 ∩ cin 3097 dom cdm 4579 ↾ cres 4581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-xp 4585 df-dm 4589 df-res 4591 |
This theorem is referenced by: resfunexg 5681 resfunexgALT 6048 |
Copyright terms: Public domain | W3C validator |