ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmresexg GIF version

Theorem dmresexg 4882
Description: The domain of a restriction to a set exists. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
dmresexg (𝐵𝑉 → dom (𝐴𝐵) ∈ V)

Proof of Theorem dmresexg
StepHypRef Expression
1 dmres 4880 . 2 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
2 inex1g 4096 . 2 (𝐵𝑉 → (𝐵 ∩ dom 𝐴) ∈ V)
31, 2eqeltrid 2241 1 (𝐵𝑉 → dom (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2125  Vcvv 2709  cin 3097  dom cdm 4579  cres 4581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-xp 4585  df-dm 4589  df-res 4591
This theorem is referenced by:  resfunexg  5681  resfunexgALT  6048
  Copyright terms: Public domain W3C validator