ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmresexg GIF version

Theorem dmresexg 4778
Description: The domain of a restriction to a set exists. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
dmresexg (𝐵𝑉 → dom (𝐴𝐵) ∈ V)

Proof of Theorem dmresexg
StepHypRef Expression
1 dmres 4776 . 2 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
2 inex1g 4004 . 2 (𝐵𝑉 → (𝐵 ∩ dom 𝐴) ∈ V)
31, 2syl5eqel 2186 1 (𝐵𝑉 → dom (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1448  Vcvv 2641  cin 3020  dom cdm 4477  cres 4479
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-xp 4483  df-dm 4487  df-res 4489
This theorem is referenced by:  resfunexg  5573  resfunexgALT  5939
  Copyright terms: Public domain W3C validator