| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > shftdm | GIF version | ||
| Description: Domain of a relation shifted by 𝐴. The set on the right is more commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every element of dom 𝐹). (Contributed by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| shftfval.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| shftdm | ⊢ (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | . . . 4 ⊢ 𝐹 ∈ V | |
| 2 | 1 | shftfval 11327 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
| 3 | 2 | dmeqd 4924 | . 2 ⊢ (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
| 4 | 19.42v 1953 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦(𝑥 − 𝐴)𝐹𝑦)) | |
| 5 | simpr 110 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
| 6 | simpl 109 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 7 | 5, 6 | subcld 8453 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 − 𝐴) ∈ ℂ) |
| 8 | eldmg 4917 | . . . . . . 7 ⊢ ((𝑥 − 𝐴) ∈ ℂ → ((𝑥 − 𝐴) ∈ dom 𝐹 ↔ ∃𝑦(𝑥 − 𝐴)𝐹𝑦)) | |
| 9 | 7, 8 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥 − 𝐴) ∈ dom 𝐹 ↔ ∃𝑦(𝑥 − 𝐴)𝐹𝑦)) |
| 10 | 9 | pm5.32da 452 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ dom 𝐹) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦(𝑥 − 𝐴)𝐹𝑦))) |
| 11 | 4, 10 | bitr4id 199 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∃𝑦(𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ dom 𝐹))) |
| 12 | 11 | abbidv 2347 | . . 3 ⊢ (𝐴 ∈ ℂ → {𝑥 ∣ ∃𝑦(𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ dom 𝐹)}) |
| 13 | dmopab 4933 | . . 3 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} | |
| 14 | df-rab 2517 | . . 3 ⊢ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ dom 𝐹)} | |
| 15 | 12, 13, 14 | 3eqtr4g 2287 | . 2 ⊢ (𝐴 ∈ ℂ → dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹}) |
| 16 | 3, 15 | eqtrd 2262 | 1 ⊢ (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {cab 2215 {crab 2512 Vcvv 2799 class class class wbr 4082 {copab 4143 dom cdm 4718 (class class class)co 6000 ℂcc 7993 − cmin 8313 shift cshi 11320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 df-shft 11321 |
| This theorem is referenced by: shftfn 11330 |
| Copyright terms: Public domain | W3C validator |