| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzoelz | GIF version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoelz | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 10287 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | |
| 2 | elfzoel2 10288 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | |
| 3 | fzof 10286 | . . . . 5 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 4 | 3 | fovcl 6064 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) ∈ 𝒫 ℤ) |
| 5 | 1, 2, 4 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ∈ 𝒫 ℤ) |
| 6 | 5 | elpwid 3632 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ⊆ ℤ) |
| 7 | id 19 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ (𝐵..^𝐶)) | |
| 8 | 6, 7 | sseldd 3198 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 𝒫 cpw 3621 (class class class)co 5957 ℤcz 9392 ..^cfzo 10284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-fz 10151 df-fzo 10285 |
| This theorem is referenced by: elfzo2 10292 elfzole1 10298 elfzolt2 10299 elfzolt3 10300 elfzolt2b 10301 elfzouz2 10304 fzonnsub 10313 fzospliti 10320 fzodisj 10322 fzodisjsn 10326 fzonmapblen 10333 fzoaddel 10338 elincfzoext 10344 fzosubel 10345 modaddmodup 10554 modaddmodlo 10555 modfzo0difsn 10562 modsumfzodifsn 10563 addmodlteq 10565 iseqf1olemqk 10674 seq3f1olemp 10682 seqfeq4g 10698 ccatcl 11072 ccatlen 11074 ccatval2 11077 ccatval3 11078 ccatvalfn 11080 ccatlid 11085 ccatass 11087 ccatrn 11088 swrdlen 11128 swrdfv 11129 swrdfv0 11130 swrdfv2 11139 swrdwrdsymbg 11140 swrdspsleq 11143 swrds1 11144 ccatswrd 11146 pfxfv 11160 ccatpfx 11177 swrdswrd 11181 fzomaxdiflem 11498 fzomaxdif 11499 fzo0dvdseq 12243 fzocongeq 12244 addmodlteqALT 12245 crth 12621 phimullem 12622 eulerthlem1 12624 eulerthlemfi 12625 eulerthlemrprm 12626 hashgcdlem 12635 hashgcdeq 12637 phisum 12638 reumodprminv 12651 modprm0 12652 nnnn0modprm0 12653 modprmn0modprm0 12654 4sqlemafi 12793 nninfdclemlt 12897 gsumfzfsumlemm 14424 znf1o 14488 trilpolemeq1 16120 |
| Copyright terms: Public domain | W3C validator |