| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzoelz | GIF version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoelz | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 10266 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | |
| 2 | elfzoel2 10267 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | |
| 3 | fzof 10265 | . . . . 5 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 4 | 3 | fovcl 6050 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) ∈ 𝒫 ℤ) |
| 5 | 1, 2, 4 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ∈ 𝒫 ℤ) |
| 6 | 5 | elpwid 3626 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ⊆ ℤ) |
| 7 | id 19 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ (𝐵..^𝐶)) | |
| 8 | 6, 7 | sseldd 3193 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 𝒫 cpw 3615 (class class class)co 5943 ℤcz 9371 ..^cfzo 10263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-fz 10130 df-fzo 10264 |
| This theorem is referenced by: elfzo2 10271 elfzole1 10277 elfzolt2 10278 elfzolt3 10279 elfzolt2b 10280 elfzouz2 10283 fzonnsub 10291 fzospliti 10298 fzodisj 10300 fzonmapblen 10309 fzoaddel 10314 elincfzoext 10320 fzosubel 10321 modaddmodup 10530 modaddmodlo 10531 modfzo0difsn 10538 modsumfzodifsn 10539 addmodlteq 10541 iseqf1olemqk 10650 seq3f1olemp 10658 seqfeq4g 10674 ccatcl 11047 ccatlen 11049 ccatval2 11052 ccatval3 11053 ccatvalfn 11055 ccatlid 11060 ccatass 11062 ccatrn 11063 fzomaxdiflem 11365 fzomaxdif 11366 fzo0dvdseq 12110 fzocongeq 12111 addmodlteqALT 12112 crth 12488 phimullem 12489 eulerthlem1 12491 eulerthlemfi 12492 eulerthlemrprm 12493 hashgcdlem 12502 hashgcdeq 12504 phisum 12505 reumodprminv 12518 modprm0 12519 nnnn0modprm0 12520 modprmn0modprm0 12521 4sqlemafi 12660 nninfdclemlt 12764 gsumfzfsumlemm 14291 znf1o 14355 trilpolemeq1 15912 |
| Copyright terms: Public domain | W3C validator |