ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzoelz GIF version

Theorem elfzoelz 10050
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
elfzoelz (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ)

Proof of Theorem elfzoelz
StepHypRef Expression
1 elfzoel1 10048 . . . 4 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)
2 elfzoel2 10049 . . . 4 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ)
3 fzof 10047 . . . . 5 ..^:(ℤ × ℤ)⟶𝒫 ℤ
43fovcl 5927 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) ∈ 𝒫 ℤ)
51, 2, 4syl2anc 409 . . 3 (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ∈ 𝒫 ℤ)
65elpwid 3554 . 2 (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ⊆ ℤ)
7 id 19 . 2 (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ (𝐵..^𝐶))
86, 7sseldd 3129 1 (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2128  𝒫 cpw 3543  (class class class)co 5825  cz 9168  ..^cfzo 10045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-addcom 7833  ax-addass 7835  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-0id 7841  ax-rnegex 7842  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-ltadd 7849
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-id 4254  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-fv 5179  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-inn 8835  df-n0 9092  df-z 9169  df-fz 9914  df-fzo 10046
This theorem is referenced by:  elfzo2  10053  elfzole1  10058  elfzolt2  10059  elfzolt3  10060  elfzolt2b  10061  elfzouz2  10064  fzonnsub  10072  fzospliti  10079  fzodisj  10081  fzonmapblen  10090  fzoaddel  10095  fzosubel  10097  modaddmodup  10290  modaddmodlo  10291  modfzo0difsn  10298  modsumfzodifsn  10299  addmodlteq  10301  iseqf1olemqk  10397  seq3f1olemp  10405  fzomaxdiflem  11016  fzomaxdif  11017  fzo0dvdseq  11753  fzocongeq  11754  addmodlteqALT  11755  crth  12103  phimullem  12104  eulerthlem1  12106  eulerthlemfi  12107  eulerthlemrprm  12108  hashgcdlem  12117  hashgcdeq  12118  phisum  12119  reumodprminv  12132  modprm0  12133  nnnn0modprm0  12134  modprmn0modprm0  12135  nninfdclemlt  12224  trilpolemeq1  13653
  Copyright terms: Public domain W3C validator