| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzoelz | GIF version | ||
| Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfzoelz | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 10220 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | |
| 2 | elfzoel2 10221 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | |
| 3 | fzof 10219 | . . . . 5 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 4 | 3 | fovcl 6028 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) ∈ 𝒫 ℤ) |
| 5 | 1, 2, 4 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ∈ 𝒫 ℤ) |
| 6 | 5 | elpwid 3616 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ⊆ ℤ) |
| 7 | id 19 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ (𝐵..^𝐶)) | |
| 8 | 6, 7 | sseldd 3184 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 𝒫 cpw 3605 (class class class)co 5922 ℤcz 9326 ..^cfzo 10217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-fz 10084 df-fzo 10218 |
| This theorem is referenced by: elfzo2 10225 elfzole1 10231 elfzolt2 10232 elfzolt3 10233 elfzolt2b 10234 elfzouz2 10237 fzonnsub 10245 fzospliti 10252 fzodisj 10254 fzonmapblen 10263 fzoaddel 10268 fzosubel 10270 modaddmodup 10479 modaddmodlo 10480 modfzo0difsn 10487 modsumfzodifsn 10488 addmodlteq 10490 iseqf1olemqk 10599 seq3f1olemp 10607 seqfeq4g 10623 fzomaxdiflem 11277 fzomaxdif 11278 fzo0dvdseq 12022 fzocongeq 12023 addmodlteqALT 12024 crth 12392 phimullem 12393 eulerthlem1 12395 eulerthlemfi 12396 eulerthlemrprm 12397 hashgcdlem 12406 hashgcdeq 12408 phisum 12409 reumodprminv 12422 modprm0 12423 nnnn0modprm0 12424 modprmn0modprm0 12425 4sqlemafi 12564 nninfdclemlt 12668 gsumfzfsumlemm 14143 znf1o 14207 trilpolemeq1 15684 |
| Copyright terms: Public domain | W3C validator |