![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzoelz | GIF version |
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
elfzoelz | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel1 10214 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | |
2 | elfzoel2 10215 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | |
3 | fzof 10213 | . . . . 5 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
4 | 3 | fovcl 6025 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) ∈ 𝒫 ℤ) |
5 | 1, 2, 4 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ∈ 𝒫 ℤ) |
6 | 5 | elpwid 3613 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ⊆ ℤ) |
7 | id 19 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ (𝐵..^𝐶)) | |
8 | 6, 7 | sseldd 3181 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 𝒫 cpw 3602 (class class class)co 5919 ℤcz 9320 ..^cfzo 10211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-fz 10078 df-fzo 10212 |
This theorem is referenced by: elfzo2 10219 elfzole1 10225 elfzolt2 10226 elfzolt3 10227 elfzolt2b 10228 elfzouz2 10231 fzonnsub 10239 fzospliti 10246 fzodisj 10248 fzonmapblen 10257 fzoaddel 10262 fzosubel 10264 modaddmodup 10461 modaddmodlo 10462 modfzo0difsn 10469 modsumfzodifsn 10470 addmodlteq 10472 iseqf1olemqk 10581 seq3f1olemp 10589 seqfeq4g 10605 fzomaxdiflem 11259 fzomaxdif 11260 fzo0dvdseq 12002 fzocongeq 12003 addmodlteqALT 12004 crth 12365 phimullem 12366 eulerthlem1 12368 eulerthlemfi 12369 eulerthlemrprm 12370 hashgcdlem 12379 hashgcdeq 12380 phisum 12381 reumodprminv 12394 modprm0 12395 nnnn0modprm0 12396 modprmn0modprm0 12397 4sqlemafi 12536 nninfdclemlt 12611 gsumfzfsumlemm 14086 znf1o 14150 trilpolemeq1 15600 |
Copyright terms: Public domain | W3C validator |