ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fopwdom GIF version

Theorem fopwdom 6958
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fopwdom ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)

Proof of Theorem fopwdom
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5052 . . . . . 6 (𝐹𝑎) ⊆ ran 𝐹
2 dfdm4 4889 . . . . . . 7 dom 𝐹 = ran 𝐹
3 fof 5520 . . . . . . . 8 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
4 fdm 5451 . . . . . . . 8 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
53, 4syl 14 . . . . . . 7 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
62, 5eqtr3id 2254 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐴)
71, 6sseqtrid 3251 . . . . 5 (𝐹:𝐴onto𝐵 → (𝐹𝑎) ⊆ 𝐴)
87adantl 277 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → (𝐹𝑎) ⊆ 𝐴)
9 cnvexg 5239 . . . . . 6 (𝐹 ∈ V → 𝐹 ∈ V)
109adantr 276 . . . . 5 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝐹 ∈ V)
11 imaexg 5055 . . . . 5 (𝐹 ∈ V → (𝐹𝑎) ∈ V)
12 elpwg 3634 . . . . 5 ((𝐹𝑎) ∈ V → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
1310, 11, 123syl 17 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
148, 13mpbird 167 . . 3 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → (𝐹𝑎) ∈ 𝒫 𝐴)
1514a1d 22 . 2 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → (𝑎 ∈ 𝒫 𝐵 → (𝐹𝑎) ∈ 𝒫 𝐴))
16 imaeq2 5037 . . . . . . 7 ((𝐹𝑎) = (𝐹𝑏) → (𝐹 “ (𝐹𝑎)) = (𝐹 “ (𝐹𝑏)))
1716adantl 277 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑎)) = (𝐹 “ (𝐹𝑏)))
18 simpllr 534 . . . . . . 7 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹:𝐴onto𝐵)
19 simplrl 535 . . . . . . . 8 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎 ∈ 𝒫 𝐵)
2019elpwid 3637 . . . . . . 7 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝐵)
21 foimacnv 5562 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
2218, 20, 21syl2anc 411 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
23 simplrr 536 . . . . . . . 8 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏 ∈ 𝒫 𝐵)
2423elpwid 3637 . . . . . . 7 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝐵)
25 foimacnv 5562 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑏𝐵) → (𝐹 “ (𝐹𝑏)) = 𝑏)
2618, 24, 25syl2anc 411 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑏)) = 𝑏)
2717, 22, 263eqtr3d 2248 . . . . 5 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎 = 𝑏)
2827ex 115 . . . 4 (((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
29 imaeq2 5037 . . . 4 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
3028, 29impbid1 142 . . 3 (((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
3130ex 115 . 2 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → ((𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏)))
32 rnexg 4962 . . . . 5 (𝐹 ∈ V → ran 𝐹 ∈ V)
33 forn 5523 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
3433eleq1d 2276 . . . . 5 (𝐹:𝐴onto𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V))
3532, 34syl5ibcom 155 . . . 4 (𝐹 ∈ V → (𝐹:𝐴onto𝐵𝐵 ∈ V))
3635imp 124 . . 3 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ V)
37 pwexg 4240 . . 3 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
3836, 37syl 14 . 2 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝒫 𝐵 ∈ V)
39 dmfex 5487 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝐴𝐵) → 𝐴 ∈ V)
403, 39sylan2 286 . . 3 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝐴 ∈ V)
41 pwexg 4240 . . 3 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
4240, 41syl 14 . 2 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝒫 𝐴 ∈ V)
4315, 31, 38, 42dom3d 6888 1 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  Vcvv 2776  wss 3174  𝒫 cpw 3626   class class class wbr 4059  ccnv 4692  dom cdm 4693  ran crn 4694  cima 4696  wf 5286  ontowfo 5288  cdom 6849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-fv 5298  df-dom 6852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator