ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fopwdom GIF version

Theorem fopwdom 6933
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fopwdom ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)

Proof of Theorem fopwdom
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5033 . . . . . 6 (𝐹𝑎) ⊆ ran 𝐹
2 dfdm4 4870 . . . . . . 7 dom 𝐹 = ran 𝐹
3 fof 5498 . . . . . . . 8 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
4 fdm 5431 . . . . . . . 8 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
53, 4syl 14 . . . . . . 7 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
62, 5eqtr3id 2252 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐴)
71, 6sseqtrid 3243 . . . . 5 (𝐹:𝐴onto𝐵 → (𝐹𝑎) ⊆ 𝐴)
87adantl 277 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → (𝐹𝑎) ⊆ 𝐴)
9 cnvexg 5220 . . . . . 6 (𝐹 ∈ V → 𝐹 ∈ V)
109adantr 276 . . . . 5 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝐹 ∈ V)
11 imaexg 5036 . . . . 5 (𝐹 ∈ V → (𝐹𝑎) ∈ V)
12 elpwg 3624 . . . . 5 ((𝐹𝑎) ∈ V → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
1310, 11, 123syl 17 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
148, 13mpbird 167 . . 3 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → (𝐹𝑎) ∈ 𝒫 𝐴)
1514a1d 22 . 2 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → (𝑎 ∈ 𝒫 𝐵 → (𝐹𝑎) ∈ 𝒫 𝐴))
16 imaeq2 5018 . . . . . . 7 ((𝐹𝑎) = (𝐹𝑏) → (𝐹 “ (𝐹𝑎)) = (𝐹 “ (𝐹𝑏)))
1716adantl 277 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑎)) = (𝐹 “ (𝐹𝑏)))
18 simpllr 534 . . . . . . 7 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹:𝐴onto𝐵)
19 simplrl 535 . . . . . . . 8 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎 ∈ 𝒫 𝐵)
2019elpwid 3627 . . . . . . 7 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝐵)
21 foimacnv 5540 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
2218, 20, 21syl2anc 411 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
23 simplrr 536 . . . . . . . 8 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏 ∈ 𝒫 𝐵)
2423elpwid 3627 . . . . . . 7 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝐵)
25 foimacnv 5540 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑏𝐵) → (𝐹 “ (𝐹𝑏)) = 𝑏)
2618, 24, 25syl2anc 411 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑏)) = 𝑏)
2717, 22, 263eqtr3d 2246 . . . . 5 ((((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎 = 𝑏)
2827ex 115 . . . 4 (((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
29 imaeq2 5018 . . . 4 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
3028, 29impbid1 142 . . 3 (((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
3130ex 115 . 2 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → ((𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏)))
32 rnexg 4943 . . . . 5 (𝐹 ∈ V → ran 𝐹 ∈ V)
33 forn 5501 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
3433eleq1d 2274 . . . . 5 (𝐹:𝐴onto𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V))
3532, 34syl5ibcom 155 . . . 4 (𝐹 ∈ V → (𝐹:𝐴onto𝐵𝐵 ∈ V))
3635imp 124 . . 3 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ V)
37 pwexg 4224 . . 3 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
3836, 37syl 14 . 2 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝒫 𝐵 ∈ V)
39 dmfex 5465 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝐴𝐵) → 𝐴 ∈ V)
403, 39sylan2 286 . . 3 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝐴 ∈ V)
41 pwexg 4224 . . 3 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
4240, 41syl 14 . 2 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝒫 𝐴 ∈ V)
4315, 31, 38, 42dom3d 6865 1 ((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  Vcvv 2772  wss 3166  𝒫 cpw 3616   class class class wbr 4044  ccnv 4674  dom cdm 4675  ran crn 4676  cima 4678  wf 5267  ontowfo 5269  cdom 6826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-fv 5279  df-dom 6829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator