Step | Hyp | Ref
| Expression |
1 | | imassrn 4957 |
. . . . . 6
⊢ (◡𝐹 “ 𝑎) ⊆ ran ◡𝐹 |
2 | | dfdm4 4796 |
. . . . . . 7
⊢ dom 𝐹 = ran ◡𝐹 |
3 | | fof 5410 |
. . . . . . . 8
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
4 | | fdm 5343 |
. . . . . . . 8
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
5 | 3, 4 | syl 14 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
6 | 2, 5 | eqtr3id 2213 |
. . . . . 6
⊢ (𝐹:𝐴–onto→𝐵 → ran ◡𝐹 = 𝐴) |
7 | 1, 6 | sseqtrid 3192 |
. . . . 5
⊢ (𝐹:𝐴–onto→𝐵 → (◡𝐹 “ 𝑎) ⊆ 𝐴) |
8 | 7 | adantl 275 |
. . . 4
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → (◡𝐹 “ 𝑎) ⊆ 𝐴) |
9 | | cnvexg 5141 |
. . . . . 6
⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) |
10 | 9 | adantr 274 |
. . . . 5
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → ◡𝐹 ∈ V) |
11 | | imaexg 4958 |
. . . . 5
⊢ (◡𝐹 ∈ V → (◡𝐹 “ 𝑎) ∈ V) |
12 | | elpwg 3567 |
. . . . 5
⊢ ((◡𝐹 “ 𝑎) ∈ V → ((◡𝐹 “ 𝑎) ∈ 𝒫 𝐴 ↔ (◡𝐹 “ 𝑎) ⊆ 𝐴)) |
13 | 10, 11, 12 | 3syl 17 |
. . . 4
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → ((◡𝐹 “ 𝑎) ∈ 𝒫 𝐴 ↔ (◡𝐹 “ 𝑎) ⊆ 𝐴)) |
14 | 8, 13 | mpbird 166 |
. . 3
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → (◡𝐹 “ 𝑎) ∈ 𝒫 𝐴) |
15 | 14 | a1d 22 |
. 2
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → (𝑎 ∈ 𝒫 𝐵 → (◡𝐹 “ 𝑎) ∈ 𝒫 𝐴)) |
16 | | imaeq2 4942 |
. . . . . . 7
⊢ ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) → (𝐹 “ (◡𝐹 “ 𝑎)) = (𝐹 “ (◡𝐹 “ 𝑏))) |
17 | 16 | adantl 275 |
. . . . . 6
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → (𝐹 “ (◡𝐹 “ 𝑎)) = (𝐹 “ (◡𝐹 “ 𝑏))) |
18 | | simpllr 524 |
. . . . . . 7
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝐹:𝐴–onto→𝐵) |
19 | | simplrl 525 |
. . . . . . . 8
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑎 ∈ 𝒫 𝐵) |
20 | 19 | elpwid 3570 |
. . . . . . 7
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑎 ⊆ 𝐵) |
21 | | foimacnv 5450 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑎 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
22 | 18, 20, 21 | syl2anc 409 |
. . . . . 6
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → (𝐹 “ (◡𝐹 “ 𝑎)) = 𝑎) |
23 | | simplrr 526 |
. . . . . . . 8
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑏 ∈ 𝒫 𝐵) |
24 | 23 | elpwid 3570 |
. . . . . . 7
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑏 ⊆ 𝐵) |
25 | | foimacnv 5450 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑏 ⊆ 𝐵) → (𝐹 “ (◡𝐹 “ 𝑏)) = 𝑏) |
26 | 18, 24, 25 | syl2anc 409 |
. . . . . 6
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → (𝐹 “ (◡𝐹 “ 𝑏)) = 𝑏) |
27 | 17, 22, 26 | 3eqtr3d 2206 |
. . . . 5
⊢ ((((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) ∧ (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) → 𝑎 = 𝑏) |
28 | 27 | ex 114 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) → ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) → 𝑎 = 𝑏)) |
29 | | imaeq2 4942 |
. . . 4
⊢ (𝑎 = 𝑏 → (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏)) |
30 | 28, 29 | impbid1 141 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) ∧ (𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵)) → ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) ↔ 𝑎 = 𝑏)) |
31 | 30 | ex 114 |
. 2
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → ((𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵) → ((◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑏) ↔ 𝑎 = 𝑏))) |
32 | | rnexg 4869 |
. . . . 5
⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) |
33 | | forn 5413 |
. . . . . 6
⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
34 | 33 | eleq1d 2235 |
. . . . 5
⊢ (𝐹:𝐴–onto→𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)) |
35 | 32, 34 | syl5ibcom 154 |
. . . 4
⊢ (𝐹 ∈ V → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
36 | 35 | imp 123 |
. . 3
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ V) |
37 | | pwexg 4159 |
. . 3
⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ V) |
38 | 36, 37 | syl 14 |
. 2
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → 𝒫 𝐵 ∈ V) |
39 | | dmfex 5377 |
. . . 4
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) |
40 | 3, 39 | sylan2 284 |
. . 3
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → 𝐴 ∈ V) |
41 | | pwexg 4159 |
. . 3
⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) |
42 | 40, 41 | syl 14 |
. 2
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → 𝒫 𝐴 ∈ V) |
43 | 15, 31, 38, 42 | dom3d 6740 |
1
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐴–onto→𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴) |