ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restid2 GIF version

Theorem restid2 13276
Description: The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restid2 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = 𝐽)

Proof of Theorem restid2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwexg 4263 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21adantr 276 . . . 4 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝒫 𝐴 ∈ V)
3 simpr 110 . . . 4 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝐽 ⊆ 𝒫 𝐴)
42, 3ssexd 4223 . . 3 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝐽 ∈ V)
5 simpl 109 . . 3 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝐴𝑉)
6 restval 13273 . . 3 ((𝐽 ∈ V ∧ 𝐴𝑉) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
74, 5, 6syl2anc 411 . 2 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
83sselda 3224 . . . . . . . 8 (((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥𝐽) → 𝑥 ∈ 𝒫 𝐴)
98elpwid 3660 . . . . . . 7 (((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥𝐽) → 𝑥𝐴)
10 df-ss 3210 . . . . . . 7 (𝑥𝐴 ↔ (𝑥𝐴) = 𝑥)
119, 10sylib 122 . . . . . 6 (((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥𝐽) → (𝑥𝐴) = 𝑥)
1211mpteq2dva 4173 . . . . 5 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝑥𝐽 ↦ (𝑥𝐴)) = (𝑥𝐽𝑥))
13 mptresid 5058 . . . . 5 ( I ↾ 𝐽) = (𝑥𝐽𝑥)
1412, 13eqtr4di 2280 . . . 4 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝑥𝐽 ↦ (𝑥𝐴)) = ( I ↾ 𝐽))
1514rneqd 4952 . . 3 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → ran (𝑥𝐽 ↦ (𝑥𝐴)) = ran ( I ↾ 𝐽))
16 rnresi 5084 . . 3 ran ( I ↾ 𝐽) = 𝐽
1715, 16eqtrdi 2278 . 2 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → ran (𝑥𝐽 ↦ (𝑥𝐴)) = 𝐽)
187, 17eqtrd 2262 1 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  wss 3197  𝒫 cpw 3649  cmpt 4144   I cid 4378  ran crn 4719  cres 4720  (class class class)co 6000  t crest 13267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-rest 13269
This theorem is referenced by:  restid  13278  topnidg  13280
  Copyright terms: Public domain W3C validator