| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > restid2 | GIF version | ||
| Description: The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| restid2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 4235 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 2 | 1 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝒫 𝐴 ∈ V) |
| 3 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐽 ⊆ 𝒫 𝐴) | |
| 4 | 2, 3 | ssexd 4195 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐽 ∈ V) |
| 5 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐴 ∈ 𝑉) | |
| 6 | restval 13162 | . . 3 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | |
| 7 | 4, 5, 6 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 8 | 3 | sselda 3197 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝒫 𝐴) |
| 9 | 8 | elpwid 3632 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝐴) |
| 10 | df-ss 3183 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐴 ↔ (𝑥 ∩ 𝐴) = 𝑥) | |
| 11 | 9, 10 | sylib 122 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) = 𝑥) |
| 12 | 11 | mpteq2dva 4145 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = (𝑥 ∈ 𝐽 ↦ 𝑥)) |
| 13 | mptresid 5027 | . . . . 5 ⊢ ( I ↾ 𝐽) = (𝑥 ∈ 𝐽 ↦ 𝑥) | |
| 14 | 12, 13 | eqtr4di 2257 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = ( I ↾ 𝐽)) |
| 15 | 14 | rneqd 4921 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = ran ( I ↾ 𝐽)) |
| 16 | rnresi 5053 | . . 3 ⊢ ran ( I ↾ 𝐽) = 𝐽 | |
| 17 | 15, 16 | eqtrdi 2255 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = 𝐽) |
| 18 | 7, 17 | eqtrd 2239 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∩ cin 3169 ⊆ wss 3170 𝒫 cpw 3621 ↦ cmpt 4116 I cid 4348 ran crn 4689 ↾ cres 4690 (class class class)co 5962 ↾t crest 13156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-rest 13158 |
| This theorem is referenced by: restid 13167 topnidg 13169 |
| Copyright terms: Public domain | W3C validator |