| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > restid2 | GIF version | ||
| Description: The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| restid2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 4263 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 2 | 1 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝒫 𝐴 ∈ V) |
| 3 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐽 ⊆ 𝒫 𝐴) | |
| 4 | 2, 3 | ssexd 4223 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐽 ∈ V) |
| 5 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → 𝐴 ∈ 𝑉) | |
| 6 | restval 13273 | . . 3 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | |
| 7 | 4, 5, 6 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 8 | 3 | sselda 3224 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝒫 𝐴) |
| 9 | 8 | elpwid 3660 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝐴) |
| 10 | df-ss 3210 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐴 ↔ (𝑥 ∩ 𝐴) = 𝑥) | |
| 11 | 9, 10 | sylib 122 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) = 𝑥) |
| 12 | 11 | mpteq2dva 4173 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = (𝑥 ∈ 𝐽 ↦ 𝑥)) |
| 13 | mptresid 5058 | . . . . 5 ⊢ ( I ↾ 𝐽) = (𝑥 ∈ 𝐽 ↦ 𝑥) | |
| 14 | 12, 13 | eqtr4di 2280 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = ( I ↾ 𝐽)) |
| 15 | 14 | rneqd 4952 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = ran ( I ↾ 𝐽)) |
| 16 | rnresi 5084 | . . 3 ⊢ ran ( I ↾ 𝐽) = 𝐽 | |
| 17 | 15, 16 | eqtrdi 2278 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) = 𝐽) |
| 18 | 7, 17 | eqtrd 2262 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 ⊆ wss 3197 𝒫 cpw 3649 ↦ cmpt 4144 I cid 4378 ran crn 4719 ↾ cres 4720 (class class class)co 6000 ↾t crest 13267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-rest 13269 |
| This theorem is referenced by: restid 13278 topnidg 13280 |
| Copyright terms: Public domain | W3C validator |