ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restid2 GIF version

Theorem restid2 13165
Description: The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restid2 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = 𝐽)

Proof of Theorem restid2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwexg 4235 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21adantr 276 . . . 4 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝒫 𝐴 ∈ V)
3 simpr 110 . . . 4 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝐽 ⊆ 𝒫 𝐴)
42, 3ssexd 4195 . . 3 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝐽 ∈ V)
5 simpl 109 . . 3 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → 𝐴𝑉)
6 restval 13162 . . 3 ((𝐽 ∈ V ∧ 𝐴𝑉) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
74, 5, 6syl2anc 411 . 2 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
83sselda 3197 . . . . . . . 8 (((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥𝐽) → 𝑥 ∈ 𝒫 𝐴)
98elpwid 3632 . . . . . . 7 (((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥𝐽) → 𝑥𝐴)
10 df-ss 3183 . . . . . . 7 (𝑥𝐴 ↔ (𝑥𝐴) = 𝑥)
119, 10sylib 122 . . . . . 6 (((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) ∧ 𝑥𝐽) → (𝑥𝐴) = 𝑥)
1211mpteq2dva 4145 . . . . 5 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝑥𝐽 ↦ (𝑥𝐴)) = (𝑥𝐽𝑥))
13 mptresid 5027 . . . . 5 ( I ↾ 𝐽) = (𝑥𝐽𝑥)
1412, 13eqtr4di 2257 . . . 4 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝑥𝐽 ↦ (𝑥𝐴)) = ( I ↾ 𝐽))
1514rneqd 4921 . . 3 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → ran (𝑥𝐽 ↦ (𝑥𝐴)) = ran ( I ↾ 𝐽))
16 rnresi 5053 . . 3 ran ( I ↾ 𝐽) = 𝐽
1715, 16eqtrdi 2255 . 2 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → ran (𝑥𝐽 ↦ (𝑥𝐴)) = 𝐽)
187, 17eqtrd 2239 1 ((𝐴𝑉𝐽 ⊆ 𝒫 𝐴) → (𝐽t 𝐴) = 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  cin 3169  wss 3170  𝒫 cpw 3621  cmpt 4116   I cid 4348  ran crn 4689  cres 4690  (class class class)co 5962  t crest 13156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-rest 13158
This theorem is referenced by:  restid  13167  topnidg  13169
  Copyright terms: Public domain W3C validator