| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixxssxr | GIF version | ||
| Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| ixxssxr.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| Ref | Expression |
|---|---|
| ixxssxr | ⊢ (𝐴𝑂𝐵) ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixxssxr.1 | . . . 4 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 2 | 1 | elmpocl 6148 | . . 3 ⊢ (𝑥 ∈ (𝐴𝑂𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
| 3 | 1 | ixxf 10027 | . . . . . 6 ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* |
| 4 | 3 | fovcl 6058 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) ∈ 𝒫 ℝ*) |
| 5 | 4 | elpwid 3628 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) ⊆ ℝ*) |
| 6 | 5 | sseld 3193 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴𝑂𝐵) → 𝑥 ∈ ℝ*)) |
| 7 | 2, 6 | mpcom 36 | . 2 ⊢ (𝑥 ∈ (𝐴𝑂𝐵) → 𝑥 ∈ ℝ*) |
| 8 | 7 | ssriv 3198 | 1 ⊢ (𝐴𝑂𝐵) ⊆ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 {crab 2489 ⊆ wss 3167 𝒫 cpw 3617 class class class wbr 4047 (class class class)co 5951 ∈ cmpo 5953 ℝ*cxr 8113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-xr 8118 |
| This theorem is referenced by: iccssxr 10085 iocssxr 10086 icossxr 10087 |
| Copyright terms: Public domain | W3C validator |