ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsnres GIF version

Theorem elsnres 4996
Description: Memebership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011.)
Hypothesis
Ref Expression
elsnres.1 𝐶 ∈ V
Assertion
Ref Expression
elsnres (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶

Proof of Theorem elsnres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elres 4995 . 2 (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑥 ∈ {𝐶}∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
2 rexcom4 2795 . 2 (∃𝑥 ∈ {𝐶}∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦𝑥 ∈ {𝐶} (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
3 elsnres.1 . . . 4 𝐶 ∈ V
4 opeq1 3819 . . . . . 6 (𝑥 = 𝐶 → ⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝑦⟩)
54eqeq2d 2217 . . . . 5 (𝑥 = 𝐶 → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝐶, 𝑦⟩))
64eleq1d 2274 . . . . 5 (𝑥 = 𝐶 → (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
75, 6anbi12d 473 . . . 4 (𝑥 = 𝐶 → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ (𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵)))
83, 7rexsn 3677 . . 3 (∃𝑥 ∈ {𝐶} (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ (𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
98exbii 1628 . 2 (∃𝑦𝑥 ∈ {𝐶} (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
101, 2, 93bitri 206 1 (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wex 1515  wcel 2176  wrex 2485  Vcvv 2772  {csn 3633  cop 3636  cres 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-opab 4106  df-xp 4681  df-rel 4682  df-res 4687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator