ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsnres GIF version

Theorem elsnres 4946
Description: Memebership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011.)
Hypothesis
Ref Expression
elsnres.1 𝐶 ∈ V
Assertion
Ref Expression
elsnres (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶

Proof of Theorem elsnres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elres 4945 . 2 (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑥 ∈ {𝐶}∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
2 rexcom4 2762 . 2 (∃𝑥 ∈ {𝐶}∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦𝑥 ∈ {𝐶} (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
3 elsnres.1 . . . 4 𝐶 ∈ V
4 opeq1 3780 . . . . . 6 (𝑥 = 𝐶 → ⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝑦⟩)
54eqeq2d 2189 . . . . 5 (𝑥 = 𝐶 → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝐶, 𝑦⟩))
64eleq1d 2246 . . . . 5 (𝑥 = 𝐶 → (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
75, 6anbi12d 473 . . . 4 (𝑥 = 𝐶 → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ (𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵)))
83, 7rexsn 3638 . . 3 (∃𝑥 ∈ {𝐶} (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ (𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
98exbii 1605 . 2 (∃𝑦𝑥 ∈ {𝐶} (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
101, 2, 93bitri 206 1 (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  wrex 2456  Vcvv 2739  {csn 3594  cop 3597  cres 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067  df-xp 4634  df-rel 4635  df-res 4640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator