ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsnres GIF version

Theorem elsnres 4928
Description: Memebership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011.)
Hypothesis
Ref Expression
elsnres.1 𝐶 ∈ V
Assertion
Ref Expression
elsnres (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶

Proof of Theorem elsnres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elres 4927 . 2 (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑥 ∈ {𝐶}∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
2 rexcom4 2753 . 2 (∃𝑥 ∈ {𝐶}∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦𝑥 ∈ {𝐶} (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
3 elsnres.1 . . . 4 𝐶 ∈ V
4 opeq1 3765 . . . . . 6 (𝑥 = 𝐶 → ⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝑦⟩)
54eqeq2d 2182 . . . . 5 (𝑥 = 𝐶 → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝐶, 𝑦⟩))
64eleq1d 2239 . . . . 5 (𝑥 = 𝐶 → (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
75, 6anbi12d 470 . . . 4 (𝑥 = 𝐶 → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ (𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵)))
83, 7rexsn 3627 . . 3 (∃𝑥 ∈ {𝐶} (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ (𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
98exbii 1598 . 2 (∃𝑦𝑥 ∈ {𝐶} (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦(𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
101, 2, 93bitri 205 1 (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  wrex 2449  Vcvv 2730  {csn 3583  cop 3586  cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617  df-rel 4618  df-res 4623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator