| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsnres | GIF version | ||
| Description: Memebership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011.) |
| Ref | Expression |
|---|---|
| elsnres.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| elsnres | ⊢ (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elres 4995 | . 2 ⊢ (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑥 ∈ {𝐶}∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | rexcom4 2795 | . 2 ⊢ (∃𝑥 ∈ {𝐶}∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ ∃𝑦∃𝑥 ∈ {𝐶} (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 3 | elsnres.1 | . . . 4 ⊢ 𝐶 ∈ V | |
| 4 | opeq1 3819 | . . . . . 6 ⊢ (𝑥 = 𝐶 → 〈𝑥, 𝑦〉 = 〈𝐶, 𝑦〉) | |
| 5 | 4 | eqeq2d 2217 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝐶, 𝑦〉)) |
| 6 | 4 | eleq1d 2274 | . . . . 5 ⊢ (𝑥 = 𝐶 → (〈𝑥, 𝑦〉 ∈ 𝐵 ↔ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
| 7 | 5, 6 | anbi12d 473 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ (𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵))) |
| 8 | 3, 7 | rexsn 3677 | . . 3 ⊢ (∃𝑥 ∈ {𝐶} (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ (𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
| 9 | 8 | exbii 1628 | . 2 ⊢ (∃𝑦∃𝑥 ∈ {𝐶} (𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ ∃𝑦(𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
| 10 | 1, 2, 9 | 3bitri 206 | 1 ⊢ (𝐴 ∈ (𝐵 ↾ {𝐶}) ↔ ∃𝑦(𝐴 = 〈𝐶, 𝑦〉 ∧ 〈𝐶, 𝑦〉 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1515 ∈ wcel 2176 ∃wrex 2485 Vcvv 2772 {csn 3633 〈cop 3636 ↾ cres 4677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 df-xp 4681 df-rel 4682 df-res 4687 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |