Proof of Theorem addcmpblnr
| Step | Hyp | Ref
| Expression |
| 1 | | oveq12 5931 |
. 2
⊢ (((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐴 +P 𝐷) +P
(𝐹
+P 𝑆)) = ((𝐵 +P 𝐶) +P
(𝐺
+P 𝑅))) |
| 2 | | addclpr 7604 |
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
𝐹 ∈ P)
→ (𝐴
+P 𝐹) ∈ P) |
| 3 | | addclpr 7604 |
. . . . . . . 8
⊢ ((𝐵 ∈ P ∧
𝐺 ∈ P)
→ (𝐵
+P 𝐺) ∈ P) |
| 4 | 2, 3 | anim12i 338 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐹 ∈ P)
∧ (𝐵 ∈
P ∧ 𝐺
∈ P)) → ((𝐴 +P 𝐹) ∈ P ∧
(𝐵
+P 𝐺) ∈ P)) |
| 5 | 4 | an4s 588 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐹 ∈
P ∧ 𝐺
∈ P)) → ((𝐴 +P 𝐹) ∈ P ∧
(𝐵
+P 𝐺) ∈ P)) |
| 6 | | addclpr 7604 |
. . . . . . . 8
⊢ ((𝐶 ∈ P ∧
𝑅 ∈ P)
→ (𝐶
+P 𝑅) ∈ P) |
| 7 | | addclpr 7604 |
. . . . . . . 8
⊢ ((𝐷 ∈ P ∧
𝑆 ∈ P)
→ (𝐷
+P 𝑆) ∈ P) |
| 8 | 6, 7 | anim12i 338 |
. . . . . . 7
⊢ (((𝐶 ∈ P ∧
𝑅 ∈ P)
∧ (𝐷 ∈
P ∧ 𝑆
∈ P)) → ((𝐶 +P 𝑅) ∈ P ∧
(𝐷
+P 𝑆) ∈ P)) |
| 9 | 8 | an4s 588 |
. . . . . 6
⊢ (((𝐶 ∈ P ∧
𝐷 ∈ P)
∧ (𝑅 ∈
P ∧ 𝑆
∈ P)) → ((𝐶 +P 𝑅) ∈ P ∧
(𝐷
+P 𝑆) ∈ P)) |
| 10 | 5, 9 | anim12i 338 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐹 ∈
P ∧ 𝐺
∈ P)) ∧ ((𝐶 ∈ P ∧ 𝐷 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐴 +P 𝐹) ∈ P ∧
(𝐵
+P 𝐺) ∈ P) ∧ ((𝐶 +P
𝑅) ∈ P
∧ (𝐷
+P 𝑆) ∈ P))) |
| 11 | 10 | an4s 588 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐴 +P 𝐹) ∈ P ∧
(𝐵
+P 𝐺) ∈ P) ∧ ((𝐶 +P
𝑅) ∈ P
∧ (𝐷
+P 𝑆) ∈ P))) |
| 12 | | enrbreq 7801 |
. . . 4
⊢ ((((𝐴 +P
𝐹) ∈ P
∧ (𝐵
+P 𝐺) ∈ P) ∧ ((𝐶 +P
𝑅) ∈ P
∧ (𝐷
+P 𝑆) ∈ P)) →
(〈(𝐴
+P 𝐹), (𝐵 +P 𝐺)〉
~R 〈(𝐶 +P 𝑅), (𝐷 +P 𝑆)〉 ↔ ((𝐴 +P
𝐹)
+P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P
(𝐶
+P 𝑅)))) |
| 13 | 11, 12 | syl 14 |
. . 3
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (〈(𝐴 +P 𝐹), (𝐵 +P 𝐺)〉
~R 〈(𝐶 +P 𝑅), (𝐷 +P 𝑆)〉 ↔ ((𝐴 +P
𝐹)
+P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P
(𝐶
+P 𝑅)))) |
| 14 | | simprll 537 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐹
∈ P) |
| 15 | | simplrr 536 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐷
∈ P) |
| 16 | | addcomprg 7645 |
. . . . . . . . 9
⊢ ((𝐹 ∈ P ∧
𝐷 ∈ P)
→ (𝐹
+P 𝐷) = (𝐷 +P 𝐹)) |
| 17 | 14, 15, 16 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐹 +P 𝐷) = (𝐷 +P 𝐹)) |
| 18 | 17 | oveq1d 5937 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐹 +P 𝐷) +P
𝑆) = ((𝐷 +P 𝐹) +P
𝑆)) |
| 19 | | simprrr 540 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝑆
∈ P) |
| 20 | | addassprg 7646 |
. . . . . . . 8
⊢ ((𝐹 ∈ P ∧
𝐷 ∈ P
∧ 𝑆 ∈
P) → ((𝐹
+P 𝐷) +P 𝑆) = (𝐹 +P (𝐷 +P
𝑆))) |
| 21 | 14, 15, 19, 20 | syl3anc 1249 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐹 +P 𝐷) +P
𝑆) = (𝐹 +P (𝐷 +P
𝑆))) |
| 22 | | addassprg 7646 |
. . . . . . . 8
⊢ ((𝐷 ∈ P ∧
𝐹 ∈ P
∧ 𝑆 ∈
P) → ((𝐷
+P 𝐹) +P 𝑆) = (𝐷 +P (𝐹 +P
𝑆))) |
| 23 | 15, 14, 19, 22 | syl3anc 1249 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐷 +P 𝐹) +P
𝑆) = (𝐷 +P (𝐹 +P
𝑆))) |
| 24 | 18, 21, 23 | 3eqtr3d 2237 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐹 +P (𝐷 +P
𝑆)) = (𝐷 +P (𝐹 +P
𝑆))) |
| 25 | 24 | oveq2d 5938 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐴 +P (𝐹 +P
(𝐷
+P 𝑆))) = (𝐴 +P (𝐷 +P
(𝐹
+P 𝑆)))) |
| 26 | | simplll 533 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐴
∈ P) |
| 27 | 15, 19, 7 | syl2anc 411 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐷 +P 𝑆) ∈
P) |
| 28 | | addassprg 7646 |
. . . . . 6
⊢ ((𝐴 ∈ P ∧
𝐹 ∈ P
∧ (𝐷
+P 𝑆) ∈ P) → ((𝐴 +P
𝐹)
+P (𝐷 +P 𝑆)) = (𝐴 +P (𝐹 +P
(𝐷
+P 𝑆)))) |
| 29 | 26, 14, 27, 28 | syl3anc 1249 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐴 +P 𝐹) +P
(𝐷
+P 𝑆)) = (𝐴 +P (𝐹 +P
(𝐷
+P 𝑆)))) |
| 30 | | addclpr 7604 |
. . . . . . 7
⊢ ((𝐹 ∈ P ∧
𝑆 ∈ P)
→ (𝐹
+P 𝑆) ∈ P) |
| 31 | 14, 19, 30 | syl2anc 411 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐹 +P 𝑆) ∈
P) |
| 32 | | addassprg 7646 |
. . . . . 6
⊢ ((𝐴 ∈ P ∧
𝐷 ∈ P
∧ (𝐹
+P 𝑆) ∈ P) → ((𝐴 +P
𝐷)
+P (𝐹 +P 𝑆)) = (𝐴 +P (𝐷 +P
(𝐹
+P 𝑆)))) |
| 33 | 26, 15, 31, 32 | syl3anc 1249 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐴 +P 𝐷) +P
(𝐹
+P 𝑆)) = (𝐴 +P (𝐷 +P
(𝐹
+P 𝑆)))) |
| 34 | 25, 29, 33 | 3eqtr4d 2239 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐴 +P 𝐹) +P
(𝐷
+P 𝑆)) = ((𝐴 +P 𝐷) +P
(𝐹
+P 𝑆))) |
| 35 | | simprlr 538 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐺
∈ P) |
| 36 | | simplrl 535 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐶
∈ P) |
| 37 | | addcomprg 7645 |
. . . . . . . . 9
⊢ ((𝐺 ∈ P ∧
𝐶 ∈ P)
→ (𝐺
+P 𝐶) = (𝐶 +P 𝐺)) |
| 38 | 35, 36, 37 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐺 +P 𝐶) = (𝐶 +P 𝐺)) |
| 39 | 38 | oveq1d 5937 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐺 +P 𝐶) +P
𝑅) = ((𝐶 +P 𝐺) +P
𝑅)) |
| 40 | | simprrl 539 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝑅
∈ P) |
| 41 | | addassprg 7646 |
. . . . . . . 8
⊢ ((𝐺 ∈ P ∧
𝐶 ∈ P
∧ 𝑅 ∈
P) → ((𝐺
+P 𝐶) +P 𝑅) = (𝐺 +P (𝐶 +P
𝑅))) |
| 42 | 35, 36, 40, 41 | syl3anc 1249 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐺 +P 𝐶) +P
𝑅) = (𝐺 +P (𝐶 +P
𝑅))) |
| 43 | | addassprg 7646 |
. . . . . . . 8
⊢ ((𝐶 ∈ P ∧
𝐺 ∈ P
∧ 𝑅 ∈
P) → ((𝐶
+P 𝐺) +P 𝑅) = (𝐶 +P (𝐺 +P
𝑅))) |
| 44 | 36, 35, 40, 43 | syl3anc 1249 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐶 +P 𝐺) +P
𝑅) = (𝐶 +P (𝐺 +P
𝑅))) |
| 45 | 39, 42, 44 | 3eqtr3d 2237 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐺 +P (𝐶 +P
𝑅)) = (𝐶 +P (𝐺 +P
𝑅))) |
| 46 | 45 | oveq2d 5938 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐵 +P (𝐺 +P
(𝐶
+P 𝑅))) = (𝐵 +P (𝐶 +P
(𝐺
+P 𝑅)))) |
| 47 | | simpllr 534 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐵
∈ P) |
| 48 | 36, 40, 6 | syl2anc 411 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐶 +P 𝑅) ∈
P) |
| 49 | | addassprg 7646 |
. . . . . 6
⊢ ((𝐵 ∈ P ∧
𝐺 ∈ P
∧ (𝐶
+P 𝑅) ∈ P) → ((𝐵 +P
𝐺)
+P (𝐶 +P 𝑅)) = (𝐵 +P (𝐺 +P
(𝐶
+P 𝑅)))) |
| 50 | 47, 35, 48, 49 | syl3anc 1249 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐵 +P 𝐺) +P
(𝐶
+P 𝑅)) = (𝐵 +P (𝐺 +P
(𝐶
+P 𝑅)))) |
| 51 | | addclpr 7604 |
. . . . . . 7
⊢ ((𝐺 ∈ P ∧
𝑅 ∈ P)
→ (𝐺
+P 𝑅) ∈ P) |
| 52 | 35, 40, 51 | syl2anc 411 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐺 +P 𝑅) ∈
P) |
| 53 | | addassprg 7646 |
. . . . . 6
⊢ ((𝐵 ∈ P ∧
𝐶 ∈ P
∧ (𝐺
+P 𝑅) ∈ P) → ((𝐵 +P
𝐶)
+P (𝐺 +P 𝑅)) = (𝐵 +P (𝐶 +P
(𝐺
+P 𝑅)))) |
| 54 | 47, 36, 52, 53 | syl3anc 1249 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐵 +P 𝐶) +P
(𝐺
+P 𝑅)) = (𝐵 +P (𝐶 +P
(𝐺
+P 𝑅)))) |
| 55 | 46, 50, 54 | 3eqtr4d 2239 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐵 +P 𝐺) +P
(𝐶
+P 𝑅)) = ((𝐵 +P 𝐶) +P
(𝐺
+P 𝑅))) |
| 56 | 34, 55 | eqeq12d 2211 |
. . 3
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐴 +P 𝐹) +P
(𝐷
+P 𝑆)) = ((𝐵 +P 𝐺) +P
(𝐶
+P 𝑅)) ↔ ((𝐴 +P 𝐷) +P
(𝐹
+P 𝑆)) = ((𝐵 +P 𝐶) +P
(𝐺
+P 𝑅)))) |
| 57 | 13, 56 | bitrd 188 |
. 2
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (〈(𝐴 +P 𝐹), (𝐵 +P 𝐺)〉
~R 〈(𝐶 +P 𝑅), (𝐷 +P 𝑆)〉 ↔ ((𝐴 +P
𝐷)
+P (𝐹 +P 𝑆)) = ((𝐵 +P 𝐶) +P
(𝐺
+P 𝑅)))) |
| 58 | 1, 57 | imbitrrid 156 |
1
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈(𝐴 +P
𝐹), (𝐵 +P 𝐺)〉
~R 〈(𝐶 +P 𝑅), (𝐷 +P 𝑆)〉)) |