Proof of Theorem addcmpblnr
Step | Hyp | Ref
| Expression |
1 | | oveq12 5861 |
. 2
⊢ (((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐴 +P 𝐷) +P
(𝐹
+P 𝑆)) = ((𝐵 +P 𝐶) +P
(𝐺
+P 𝑅))) |
2 | | addclpr 7498 |
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
𝐹 ∈ P)
→ (𝐴
+P 𝐹) ∈ P) |
3 | | addclpr 7498 |
. . . . . . . 8
⊢ ((𝐵 ∈ P ∧
𝐺 ∈ P)
→ (𝐵
+P 𝐺) ∈ P) |
4 | 2, 3 | anim12i 336 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐹 ∈ P)
∧ (𝐵 ∈
P ∧ 𝐺
∈ P)) → ((𝐴 +P 𝐹) ∈ P ∧
(𝐵
+P 𝐺) ∈ P)) |
5 | 4 | an4s 583 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐹 ∈
P ∧ 𝐺
∈ P)) → ((𝐴 +P 𝐹) ∈ P ∧
(𝐵
+P 𝐺) ∈ P)) |
6 | | addclpr 7498 |
. . . . . . . 8
⊢ ((𝐶 ∈ P ∧
𝑅 ∈ P)
→ (𝐶
+P 𝑅) ∈ P) |
7 | | addclpr 7498 |
. . . . . . . 8
⊢ ((𝐷 ∈ P ∧
𝑆 ∈ P)
→ (𝐷
+P 𝑆) ∈ P) |
8 | 6, 7 | anim12i 336 |
. . . . . . 7
⊢ (((𝐶 ∈ P ∧
𝑅 ∈ P)
∧ (𝐷 ∈
P ∧ 𝑆
∈ P)) → ((𝐶 +P 𝑅) ∈ P ∧
(𝐷
+P 𝑆) ∈ P)) |
9 | 8 | an4s 583 |
. . . . . 6
⊢ (((𝐶 ∈ P ∧
𝐷 ∈ P)
∧ (𝑅 ∈
P ∧ 𝑆
∈ P)) → ((𝐶 +P 𝑅) ∈ P ∧
(𝐷
+P 𝑆) ∈ P)) |
10 | 5, 9 | anim12i 336 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐹 ∈
P ∧ 𝐺
∈ P)) ∧ ((𝐶 ∈ P ∧ 𝐷 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐴 +P 𝐹) ∈ P ∧
(𝐵
+P 𝐺) ∈ P) ∧ ((𝐶 +P
𝑅) ∈ P
∧ (𝐷
+P 𝑆) ∈ P))) |
11 | 10 | an4s 583 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐴 +P 𝐹) ∈ P ∧
(𝐵
+P 𝐺) ∈ P) ∧ ((𝐶 +P
𝑅) ∈ P
∧ (𝐷
+P 𝑆) ∈ P))) |
12 | | enrbreq 7695 |
. . . 4
⊢ ((((𝐴 +P
𝐹) ∈ P
∧ (𝐵
+P 𝐺) ∈ P) ∧ ((𝐶 +P
𝑅) ∈ P
∧ (𝐷
+P 𝑆) ∈ P)) →
(〈(𝐴
+P 𝐹), (𝐵 +P 𝐺)〉
~R 〈(𝐶 +P 𝑅), (𝐷 +P 𝑆)〉 ↔ ((𝐴 +P
𝐹)
+P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P
(𝐶
+P 𝑅)))) |
13 | 11, 12 | syl 14 |
. . 3
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (〈(𝐴 +P 𝐹), (𝐵 +P 𝐺)〉
~R 〈(𝐶 +P 𝑅), (𝐷 +P 𝑆)〉 ↔ ((𝐴 +P
𝐹)
+P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P
(𝐶
+P 𝑅)))) |
14 | | simprll 532 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐹
∈ P) |
15 | | simplrr 531 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐷
∈ P) |
16 | | addcomprg 7539 |
. . . . . . . . 9
⊢ ((𝐹 ∈ P ∧
𝐷 ∈ P)
→ (𝐹
+P 𝐷) = (𝐷 +P 𝐹)) |
17 | 14, 15, 16 | syl2anc 409 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐹 +P 𝐷) = (𝐷 +P 𝐹)) |
18 | 17 | oveq1d 5867 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐹 +P 𝐷) +P
𝑆) = ((𝐷 +P 𝐹) +P
𝑆)) |
19 | | simprrr 535 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝑆
∈ P) |
20 | | addassprg 7540 |
. . . . . . . 8
⊢ ((𝐹 ∈ P ∧
𝐷 ∈ P
∧ 𝑆 ∈
P) → ((𝐹
+P 𝐷) +P 𝑆) = (𝐹 +P (𝐷 +P
𝑆))) |
21 | 14, 15, 19, 20 | syl3anc 1233 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐹 +P 𝐷) +P
𝑆) = (𝐹 +P (𝐷 +P
𝑆))) |
22 | | addassprg 7540 |
. . . . . . . 8
⊢ ((𝐷 ∈ P ∧
𝐹 ∈ P
∧ 𝑆 ∈
P) → ((𝐷
+P 𝐹) +P 𝑆) = (𝐷 +P (𝐹 +P
𝑆))) |
23 | 15, 14, 19, 22 | syl3anc 1233 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐷 +P 𝐹) +P
𝑆) = (𝐷 +P (𝐹 +P
𝑆))) |
24 | 18, 21, 23 | 3eqtr3d 2211 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐹 +P (𝐷 +P
𝑆)) = (𝐷 +P (𝐹 +P
𝑆))) |
25 | 24 | oveq2d 5868 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐴 +P (𝐹 +P
(𝐷
+P 𝑆))) = (𝐴 +P (𝐷 +P
(𝐹
+P 𝑆)))) |
26 | | simplll 528 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐴
∈ P) |
27 | 15, 19, 7 | syl2anc 409 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐷 +P 𝑆) ∈
P) |
28 | | addassprg 7540 |
. . . . . 6
⊢ ((𝐴 ∈ P ∧
𝐹 ∈ P
∧ (𝐷
+P 𝑆) ∈ P) → ((𝐴 +P
𝐹)
+P (𝐷 +P 𝑆)) = (𝐴 +P (𝐹 +P
(𝐷
+P 𝑆)))) |
29 | 26, 14, 27, 28 | syl3anc 1233 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐴 +P 𝐹) +P
(𝐷
+P 𝑆)) = (𝐴 +P (𝐹 +P
(𝐷
+P 𝑆)))) |
30 | | addclpr 7498 |
. . . . . . 7
⊢ ((𝐹 ∈ P ∧
𝑆 ∈ P)
→ (𝐹
+P 𝑆) ∈ P) |
31 | 14, 19, 30 | syl2anc 409 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐹 +P 𝑆) ∈
P) |
32 | | addassprg 7540 |
. . . . . 6
⊢ ((𝐴 ∈ P ∧
𝐷 ∈ P
∧ (𝐹
+P 𝑆) ∈ P) → ((𝐴 +P
𝐷)
+P (𝐹 +P 𝑆)) = (𝐴 +P (𝐷 +P
(𝐹
+P 𝑆)))) |
33 | 26, 15, 31, 32 | syl3anc 1233 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐴 +P 𝐷) +P
(𝐹
+P 𝑆)) = (𝐴 +P (𝐷 +P
(𝐹
+P 𝑆)))) |
34 | 25, 29, 33 | 3eqtr4d 2213 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐴 +P 𝐹) +P
(𝐷
+P 𝑆)) = ((𝐴 +P 𝐷) +P
(𝐹
+P 𝑆))) |
35 | | simprlr 533 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐺
∈ P) |
36 | | simplrl 530 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐶
∈ P) |
37 | | addcomprg 7539 |
. . . . . . . . 9
⊢ ((𝐺 ∈ P ∧
𝐶 ∈ P)
→ (𝐺
+P 𝐶) = (𝐶 +P 𝐺)) |
38 | 35, 36, 37 | syl2anc 409 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐺 +P 𝐶) = (𝐶 +P 𝐺)) |
39 | 38 | oveq1d 5867 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐺 +P 𝐶) +P
𝑅) = ((𝐶 +P 𝐺) +P
𝑅)) |
40 | | simprrl 534 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝑅
∈ P) |
41 | | addassprg 7540 |
. . . . . . . 8
⊢ ((𝐺 ∈ P ∧
𝐶 ∈ P
∧ 𝑅 ∈
P) → ((𝐺
+P 𝐶) +P 𝑅) = (𝐺 +P (𝐶 +P
𝑅))) |
42 | 35, 36, 40, 41 | syl3anc 1233 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐺 +P 𝐶) +P
𝑅) = (𝐺 +P (𝐶 +P
𝑅))) |
43 | | addassprg 7540 |
. . . . . . . 8
⊢ ((𝐶 ∈ P ∧
𝐺 ∈ P
∧ 𝑅 ∈
P) → ((𝐶
+P 𝐺) +P 𝑅) = (𝐶 +P (𝐺 +P
𝑅))) |
44 | 36, 35, 40, 43 | syl3anc 1233 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐶 +P 𝐺) +P
𝑅) = (𝐶 +P (𝐺 +P
𝑅))) |
45 | 39, 42, 44 | 3eqtr3d 2211 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐺 +P (𝐶 +P
𝑅)) = (𝐶 +P (𝐺 +P
𝑅))) |
46 | 45 | oveq2d 5868 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐵 +P (𝐺 +P
(𝐶
+P 𝑅))) = (𝐵 +P (𝐶 +P
(𝐺
+P 𝑅)))) |
47 | | simpllr 529 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐵
∈ P) |
48 | 36, 40, 6 | syl2anc 409 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐶 +P 𝑅) ∈
P) |
49 | | addassprg 7540 |
. . . . . 6
⊢ ((𝐵 ∈ P ∧
𝐺 ∈ P
∧ (𝐶
+P 𝑅) ∈ P) → ((𝐵 +P
𝐺)
+P (𝐶 +P 𝑅)) = (𝐵 +P (𝐺 +P
(𝐶
+P 𝑅)))) |
50 | 47, 35, 48, 49 | syl3anc 1233 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐵 +P 𝐺) +P
(𝐶
+P 𝑅)) = (𝐵 +P (𝐺 +P
(𝐶
+P 𝑅)))) |
51 | | addclpr 7498 |
. . . . . . 7
⊢ ((𝐺 ∈ P ∧
𝑅 ∈ P)
→ (𝐺
+P 𝑅) ∈ P) |
52 | 35, 40, 51 | syl2anc 409 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐺 +P 𝑅) ∈
P) |
53 | | addassprg 7540 |
. . . . . 6
⊢ ((𝐵 ∈ P ∧
𝐶 ∈ P
∧ (𝐺
+P 𝑅) ∈ P) → ((𝐵 +P
𝐶)
+P (𝐺 +P 𝑅)) = (𝐵 +P (𝐶 +P
(𝐺
+P 𝑅)))) |
54 | 47, 36, 52, 53 | syl3anc 1233 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐵 +P 𝐶) +P
(𝐺
+P 𝑅)) = (𝐵 +P (𝐶 +P
(𝐺
+P 𝑅)))) |
55 | 46, 50, 54 | 3eqtr4d 2213 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐵 +P 𝐺) +P
(𝐶
+P 𝑅)) = ((𝐵 +P 𝐶) +P
(𝐺
+P 𝑅))) |
56 | 34, 55 | eqeq12d 2185 |
. . 3
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐴 +P 𝐹) +P
(𝐷
+P 𝑆)) = ((𝐵 +P 𝐺) +P
(𝐶
+P 𝑅)) ↔ ((𝐴 +P 𝐷) +P
(𝐹
+P 𝑆)) = ((𝐵 +P 𝐶) +P
(𝐺
+P 𝑅)))) |
57 | 13, 56 | bitrd 187 |
. 2
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (〈(𝐴 +P 𝐹), (𝐵 +P 𝐺)〉
~R 〈(𝐶 +P 𝑅), (𝐷 +P 𝑆)〉 ↔ ((𝐴 +P
𝐷)
+P (𝐹 +P 𝑆)) = ((𝐵 +P 𝐶) +P
(𝐺
+P 𝑅)))) |
58 | 1, 57 | syl5ibr 155 |
1
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈(𝐴 +P
𝐹), (𝐵 +P 𝐺)〉
~R 〈(𝐶 +P 𝑅), (𝐷 +P 𝑆)〉)) |