ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcmpblnr GIF version

Theorem addcmpblnr 7767
Description: Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.)
Assertion
Ref Expression
addcmpblnr ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩))

Proof of Theorem addcmpblnr
StepHypRef Expression
1 oveq12 5904 . 2 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅)))
2 addclpr 7565 . . . . . . . 8 ((𝐴P𝐹P) → (𝐴 +P 𝐹) ∈ P)
3 addclpr 7565 . . . . . . . 8 ((𝐵P𝐺P) → (𝐵 +P 𝐺) ∈ P)
42, 3anim12i 338 . . . . . . 7 (((𝐴P𝐹P) ∧ (𝐵P𝐺P)) → ((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P))
54an4s 588 . . . . . 6 (((𝐴P𝐵P) ∧ (𝐹P𝐺P)) → ((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P))
6 addclpr 7565 . . . . . . . 8 ((𝐶P𝑅P) → (𝐶 +P 𝑅) ∈ P)
7 addclpr 7565 . . . . . . . 8 ((𝐷P𝑆P) → (𝐷 +P 𝑆) ∈ P)
86, 7anim12i 338 . . . . . . 7 (((𝐶P𝑅P) ∧ (𝐷P𝑆P)) → ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P))
98an4s 588 . . . . . 6 (((𝐶P𝐷P) ∧ (𝑅P𝑆P)) → ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P))
105, 9anim12i 338 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐹P𝐺P)) ∧ ((𝐶P𝐷P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P) ∧ ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P)))
1110an4s 588 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P) ∧ ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P)))
12 enrbreq 7762 . . . 4 ((((𝐴 +P 𝐹) ∈ P ∧ (𝐵 +P 𝐺) ∈ P) ∧ ((𝐶 +P 𝑅) ∈ P ∧ (𝐷 +P 𝑆) ∈ P)) → (⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩ ↔ ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅))))
1311, 12syl 14 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩ ↔ ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅))))
14 simprll 537 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐹P)
15 simplrr 536 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐷P)
16 addcomprg 7606 . . . . . . . . 9 ((𝐹P𝐷P) → (𝐹 +P 𝐷) = (𝐷 +P 𝐹))
1714, 15, 16syl2anc 411 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐹 +P 𝐷) = (𝐷 +P 𝐹))
1817oveq1d 5910 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐹 +P 𝐷) +P 𝑆) = ((𝐷 +P 𝐹) +P 𝑆))
19 simprrr 540 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝑆P)
20 addassprg 7607 . . . . . . . 8 ((𝐹P𝐷P𝑆P) → ((𝐹 +P 𝐷) +P 𝑆) = (𝐹 +P (𝐷 +P 𝑆)))
2114, 15, 19, 20syl3anc 1249 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐹 +P 𝐷) +P 𝑆) = (𝐹 +P (𝐷 +P 𝑆)))
22 addassprg 7607 . . . . . . . 8 ((𝐷P𝐹P𝑆P) → ((𝐷 +P 𝐹) +P 𝑆) = (𝐷 +P (𝐹 +P 𝑆)))
2315, 14, 19, 22syl3anc 1249 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐷 +P 𝐹) +P 𝑆) = (𝐷 +P (𝐹 +P 𝑆)))
2418, 21, 233eqtr3d 2230 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐹 +P (𝐷 +P 𝑆)) = (𝐷 +P (𝐹 +P 𝑆)))
2524oveq2d 5911 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐴 +P (𝐹 +P (𝐷 +P 𝑆))) = (𝐴 +P (𝐷 +P (𝐹 +P 𝑆))))
26 simplll 533 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐴P)
2715, 19, 7syl2anc 411 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 +P 𝑆) ∈ P)
28 addassprg 7607 . . . . . 6 ((𝐴P𝐹P ∧ (𝐷 +P 𝑆) ∈ P) → ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = (𝐴 +P (𝐹 +P (𝐷 +P 𝑆))))
2926, 14, 27, 28syl3anc 1249 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = (𝐴 +P (𝐹 +P (𝐷 +P 𝑆))))
30 addclpr 7565 . . . . . . 7 ((𝐹P𝑆P) → (𝐹 +P 𝑆) ∈ P)
3114, 19, 30syl2anc 411 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐹 +P 𝑆) ∈ P)
32 addassprg 7607 . . . . . 6 ((𝐴P𝐷P ∧ (𝐹 +P 𝑆) ∈ P) → ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = (𝐴 +P (𝐷 +P (𝐹 +P 𝑆))))
3326, 15, 31, 32syl3anc 1249 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = (𝐴 +P (𝐷 +P (𝐹 +P 𝑆))))
3425, 29, 333eqtr4d 2232 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)))
35 simprlr 538 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐺P)
36 simplrl 535 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐶P)
37 addcomprg 7606 . . . . . . . . 9 ((𝐺P𝐶P) → (𝐺 +P 𝐶) = (𝐶 +P 𝐺))
3835, 36, 37syl2anc 411 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐺 +P 𝐶) = (𝐶 +P 𝐺))
3938oveq1d 5910 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐺 +P 𝐶) +P 𝑅) = ((𝐶 +P 𝐺) +P 𝑅))
40 simprrl 539 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝑅P)
41 addassprg 7607 . . . . . . . 8 ((𝐺P𝐶P𝑅P) → ((𝐺 +P 𝐶) +P 𝑅) = (𝐺 +P (𝐶 +P 𝑅)))
4235, 36, 40, 41syl3anc 1249 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐺 +P 𝐶) +P 𝑅) = (𝐺 +P (𝐶 +P 𝑅)))
43 addassprg 7607 . . . . . . . 8 ((𝐶P𝐺P𝑅P) → ((𝐶 +P 𝐺) +P 𝑅) = (𝐶 +P (𝐺 +P 𝑅)))
4436, 35, 40, 43syl3anc 1249 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐶 +P 𝐺) +P 𝑅) = (𝐶 +P (𝐺 +P 𝑅)))
4539, 42, 443eqtr3d 2230 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐺 +P (𝐶 +P 𝑅)) = (𝐶 +P (𝐺 +P 𝑅)))
4645oveq2d 5911 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐵 +P (𝐺 +P (𝐶 +P 𝑅))) = (𝐵 +P (𝐶 +P (𝐺 +P 𝑅))))
47 simpllr 534 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐵P)
4836, 40, 6syl2anc 411 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐶 +P 𝑅) ∈ P)
49 addassprg 7607 . . . . . 6 ((𝐵P𝐺P ∧ (𝐶 +P 𝑅) ∈ P) → ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅)) = (𝐵 +P (𝐺 +P (𝐶 +P 𝑅))))
5047, 35, 48, 49syl3anc 1249 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅)) = (𝐵 +P (𝐺 +P (𝐶 +P 𝑅))))
51 addclpr 7565 . . . . . . 7 ((𝐺P𝑅P) → (𝐺 +P 𝑅) ∈ P)
5235, 40, 51syl2anc 411 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐺 +P 𝑅) ∈ P)
53 addassprg 7607 . . . . . 6 ((𝐵P𝐶P ∧ (𝐺 +P 𝑅) ∈ P) → ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅)) = (𝐵 +P (𝐶 +P (𝐺 +P 𝑅))))
5447, 36, 52, 53syl3anc 1249 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅)) = (𝐵 +P (𝐶 +P (𝐺 +P 𝑅))))
5546, 50, 543eqtr4d 2232 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅)))
5634, 55eqeq12d 2204 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐹) +P (𝐷 +P 𝑆)) = ((𝐵 +P 𝐺) +P (𝐶 +P 𝑅)) ↔ ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅))))
5713, 56bitrd 188 . 2 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩ ↔ ((𝐴 +P 𝐷) +P (𝐹 +P 𝑆)) = ((𝐵 +P 𝐶) +P (𝐺 +P 𝑅))))
581, 57imbitrrid 156 1 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  cop 3610   class class class wbr 4018  (class class class)co 5895  Pcnp 7319   +P cpp 7321   ~R cer 7324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-irdg 6394  df-1o 6440  df-2o 6441  df-oadd 6444  df-omul 6445  df-er 6558  df-ec 6560  df-qs 6564  df-ni 7332  df-pli 7333  df-mi 7334  df-lti 7335  df-plpq 7372  df-mpq 7373  df-enq 7375  df-nqqs 7376  df-plqqs 7377  df-mqqs 7378  df-1nqqs 7379  df-rq 7380  df-ltnqqs 7381  df-enq0 7452  df-nq0 7453  df-0nq0 7454  df-plq0 7455  df-mq0 7456  df-inp 7494  df-iplp 7496  df-enr 7754
This theorem is referenced by:  addsrmo  7771
  Copyright terms: Public domain W3C validator