![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enreceq | GIF version |
Description: Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.) |
Ref | Expression |
---|---|
enreceq | ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrer 7737 | . . . 4 ⊢ ~R Er (P × P) | |
2 | 1 | a1i 9 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ~R Er (P × P)) |
3 | opelxpi 4660 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ⟨𝐴, 𝐵⟩ ∈ (P × P)) | |
4 | 3 | adantr 276 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ⟨𝐴, 𝐵⟩ ∈ (P × P)) |
5 | 2, 4 | erth 6582 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (⟨𝐴, 𝐵⟩ ~R ⟨𝐶, 𝐷⟩ ↔ [⟨𝐴, 𝐵⟩] ~R = [⟨𝐶, 𝐷⟩] ~R )) |
6 | enrbreq 7736 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (⟨𝐴, 𝐵⟩ ~R ⟨𝐶, 𝐷⟩ ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) | |
7 | 5, 6 | bitr3d 190 | 1 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ⟨cop 3597 class class class wbr 4005 × cxp 4626 (class class class)co 5878 Er wer 6535 [cec 6536 Pcnp 7293 +P cpp 7295 ~R cer 7298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-irdg 6374 df-1o 6420 df-2o 6421 df-oadd 6424 df-omul 6425 df-er 6538 df-ec 6540 df-qs 6544 df-ni 7306 df-pli 7307 df-mi 7308 df-lti 7309 df-plpq 7346 df-mpq 7347 df-enq 7349 df-nqqs 7350 df-plqqs 7351 df-mqqs 7352 df-1nqqs 7353 df-rq 7354 df-ltnqqs 7355 df-enq0 7426 df-nq0 7427 df-0nq0 7428 df-plq0 7429 df-mq0 7430 df-inp 7468 df-iplp 7470 df-enr 7728 |
This theorem is referenced by: ltsrprg 7749 m1p1sr 7762 m1m1sr 7763 0idsr 7769 1idsr 7770 00sr 7771 recexgt0sr 7775 aptisr 7781 srpospr 7785 prsradd 7788 map2psrprg 7807 pitonnlem1p1 7848 recidpirq 7860 |
Copyright terms: Public domain | W3C validator |