| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enrer | GIF version | ||
| Description: The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
| Ref | Expression |
|---|---|
| enrer | ⊢ ~R Er (P × P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-enr 7793 | . 2 ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | |
| 2 | addcomprg 7645 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥)) | |
| 3 | addclpr 7604 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P) → (𝑥 +P 𝑦) ∈ P) | |
| 4 | addassprg 7646 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → ((𝑥 +P 𝑦) +P 𝑧) = (𝑥 +P (𝑦 +P 𝑧))) | |
| 5 | addcanprg 7683 | . 2 ⊢ ((𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P) → ((𝑥 +P 𝑦) = (𝑥 +P 𝑧) → 𝑦 = 𝑧)) | |
| 6 | 1, 2, 3, 4, 5 | ecopoverg 6695 | 1 ⊢ ~R Er (P × P) |
| Colors of variables: wff set class |
| Syntax hints: × cxp 4661 Er wer 6589 Pcnp 7358 +P cpp 7360 ~R cer 7363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-iplp 7535 df-enr 7793 |
| This theorem is referenced by: enreceq 7803 prsrlem1 7809 addsrmo 7810 mulsrmo 7811 ltsrprg 7814 gt0srpr 7815 0nsr 7816 axcnex 7926 |
| Copyright terms: Public domain | W3C validator |