ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds1 GIF version

Theorem dvds1 11193
Description: The only nonnegative integer that divides 1 is 1. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
dvds1 (𝑀 ∈ ℕ0 → (𝑀 ∥ 1 ↔ 𝑀 = 1))

Proof of Theorem dvds1
StepHypRef Expression
1 simpl 108 . . . 4 ((𝑀 ∈ ℕ0𝑀 ∥ 1) → 𝑀 ∈ ℕ0)
2 1nn0 8750 . . . . 5 1 ∈ ℕ0
32a1i 9 . . . 4 ((𝑀 ∈ ℕ0𝑀 ∥ 1) → 1 ∈ ℕ0)
4 simpr 109 . . . 4 ((𝑀 ∈ ℕ0𝑀 ∥ 1) → 𝑀 ∥ 1)
5 nn0z 8831 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
6 1dvds 11149 . . . . . 6 (𝑀 ∈ ℤ → 1 ∥ 𝑀)
75, 6syl 14 . . . . 5 (𝑀 ∈ ℕ0 → 1 ∥ 𝑀)
87adantr 271 . . . 4 ((𝑀 ∈ ℕ0𝑀 ∥ 1) → 1 ∥ 𝑀)
9 dvdseq 11188 . . . 4 (((𝑀 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (𝑀 ∥ 1 ∧ 1 ∥ 𝑀)) → 𝑀 = 1)
101, 3, 4, 8, 9syl22anc 1176 . . 3 ((𝑀 ∈ ℕ0𝑀 ∥ 1) → 𝑀 = 1)
1110ex 114 . 2 (𝑀 ∈ ℕ0 → (𝑀 ∥ 1 → 𝑀 = 1))
12 id 19 . . 3 (𝑀 = 1 → 𝑀 = 1)
13 1z 8837 . . . 4 1 ∈ ℤ
14 iddvds 11148 . . . 4 (1 ∈ ℤ → 1 ∥ 1)
1513, 14ax-mp 7 . . 3 1 ∥ 1
1612, 15syl6eqbr 3888 . 2 (𝑀 = 1 → 𝑀 ∥ 1)
1711, 16impbid1 141 1 (𝑀 ∈ ℕ0 → (𝑀 ∥ 1 ↔ 𝑀 = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1290  wcel 1439   class class class wbr 3851  1c1 7412  0cn0 8734  cz 8811  cdvds 11135
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-rp 9196  df-iseq 9914  df-seq3 9915  df-exp 10016  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-dvds 11136
This theorem is referenced by:  rpmulgcd2  11416  rpmul  11419  1nprm  11435  nprmdvds1  11460
  Copyright terms: Public domain W3C validator