ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemlo GIF version

Theorem resqrexlemlo 11057
Description: Lemma for resqrex 11070. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemlo ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemlo
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5905 . . . . . 6 (𝑤 = 1 → (2↑𝑤) = (2↑1))
21oveq2d 5913 . . . . 5 (𝑤 = 1 → (1 / (2↑𝑤)) = (1 / (2↑1)))
3 fveq2 5534 . . . . 5 (𝑤 = 1 → (𝐹𝑤) = (𝐹‘1))
42, 3breq12d 4031 . . . 4 (𝑤 = 1 → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑1)) < (𝐹‘1)))
54imbi2d 230 . . 3 (𝑤 = 1 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑1)) < (𝐹‘1))))
6 oveq2 5905 . . . . . 6 (𝑤 = 𝑘 → (2↑𝑤) = (2↑𝑘))
76oveq2d 5913 . . . . 5 (𝑤 = 𝑘 → (1 / (2↑𝑤)) = (1 / (2↑𝑘)))
8 fveq2 5534 . . . . 5 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
97, 8breq12d 4031 . . . 4 (𝑤 = 𝑘 → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑𝑘)) < (𝐹𝑘)))
109imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑𝑘)) < (𝐹𝑘))))
11 oveq2 5905 . . . . . 6 (𝑤 = (𝑘 + 1) → (2↑𝑤) = (2↑(𝑘 + 1)))
1211oveq2d 5913 . . . . 5 (𝑤 = (𝑘 + 1) → (1 / (2↑𝑤)) = (1 / (2↑(𝑘 + 1))))
13 fveq2 5534 . . . . 5 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
1412, 13breq12d 4031 . . . 4 (𝑤 = (𝑘 + 1) → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1))))
1514imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))))
16 oveq2 5905 . . . . . 6 (𝑤 = 𝑁 → (2↑𝑤) = (2↑𝑁))
1716oveq2d 5913 . . . . 5 (𝑤 = 𝑁 → (1 / (2↑𝑤)) = (1 / (2↑𝑁)))
18 fveq2 5534 . . . . 5 (𝑤 = 𝑁 → (𝐹𝑤) = (𝐹𝑁))
1917, 18breq12d 4031 . . . 4 (𝑤 = 𝑁 → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑𝑁)) < (𝐹𝑁)))
2019imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑𝑁)) < (𝐹𝑁))))
21 2cnd 9023 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
2221exp1d 10683 . . . . . . 7 (𝜑 → (2↑1) = 2)
23 2rp 9690 . . . . . . 7 2 ∈ ℝ+
2422, 23eqeltrdi 2280 . . . . . 6 (𝜑 → (2↑1) ∈ ℝ+)
2524rprecred 9740 . . . . 5 (𝜑 → (1 / (2↑1)) ∈ ℝ)
26 1red 8003 . . . . 5 (𝜑 → 1 ∈ ℝ)
27 resqrexlemex.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2826, 27readdcld 8018 . . . . 5 (𝜑 → (1 + 𝐴) ∈ ℝ)
2922oveq2d 5913 . . . . . 6 (𝜑 → (1 / (2↑1)) = (1 / 2))
30 halflt1 9167 . . . . . 6 (1 / 2) < 1
3129, 30eqbrtrdi 4057 . . . . 5 (𝜑 → (1 / (2↑1)) < 1)
32 resqrexlemex.agt0 . . . . . 6 (𝜑 → 0 ≤ 𝐴)
3326, 27addge01d 8521 . . . . . 6 (𝜑 → (0 ≤ 𝐴 ↔ 1 ≤ (1 + 𝐴)))
3432, 33mpbid 147 . . . . 5 (𝜑 → 1 ≤ (1 + 𝐴))
3525, 26, 28, 31, 34ltletrd 8411 . . . 4 (𝜑 → (1 / (2↑1)) < (1 + 𝐴))
36 resqrexlemex.seq . . . . 5 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
3736, 27, 32resqrexlemf1 11052 . . . 4 (𝜑 → (𝐹‘1) = (1 + 𝐴))
3835, 37breqtrrd 4046 . . 3 (𝜑 → (1 / (2↑1)) < (𝐹‘1))
3923a1i 9 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 2 ∈ ℝ+)
40 nnz 9303 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
4140ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 𝑘 ∈ ℤ)
4239, 41rpexpcld 10712 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑𝑘) ∈ ℝ+)
4342rpcnd 9730 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑𝑘) ∈ ℂ)
44 2cnd 9023 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 2 ∈ ℂ)
4542rpap0d 9734 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑𝑘) # 0)
4639rpap0d 9734 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 2 # 0)
4743, 44, 45, 46recdivap2d 8796 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) = (1 / ((2↑𝑘) · 2)))
48 nnnn0 9214 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
4948ad2antlr 489 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 𝑘 ∈ ℕ0)
5044, 49expp1d 10689 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2))
5150oveq2d 5913 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑(𝑘 + 1))) = (1 / ((2↑𝑘) · 2)))
5247, 51eqtr4d 2225 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) = (1 / (2↑(𝑘 + 1))))
5342rprecred 9740 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑𝑘)) ∈ ℝ)
5436, 27, 32resqrexlemf 11051 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶ℝ+)
5554ffvelcdmda 5672 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ+)
5655rpred 9728 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
5756adantr 276 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ)
5827adantr 276 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
5958, 55rerpdivcld 9760 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴 / (𝐹𝑘)) ∈ ℝ)
6059adantr 276 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐴 / (𝐹𝑘)) ∈ ℝ)
6157, 60readdcld 8018 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((𝐹𝑘) + (𝐴 / (𝐹𝑘))) ∈ ℝ)
62 simpr 110 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑𝑘)) < (𝐹𝑘))
6332adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 0 ≤ 𝐴)
6458, 55, 63divge0d 9769 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐴 / (𝐹𝑘)))
6556, 59addge01d 8521 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (0 ≤ (𝐴 / (𝐹𝑘)) ↔ (𝐹𝑘) ≤ ((𝐹𝑘) + (𝐴 / (𝐹𝑘)))))
6664, 65mpbid 147 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ≤ ((𝐹𝑘) + (𝐴 / (𝐹𝑘))))
6766adantr 276 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐹𝑘) ≤ ((𝐹𝑘) + (𝐴 / (𝐹𝑘))))
6853, 57, 61, 62, 67ltletrd 8411 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑𝑘)) < ((𝐹𝑘) + (𝐴 / (𝐹𝑘))))
6953, 61, 39, 68ltdiv1dd 9786 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) < (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
7036, 27, 32resqrexlemfp1 11053 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) = (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
7170adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) = (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
7269, 71breqtrrd 4046 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) < (𝐹‘(𝑘 + 1)))
7352, 72eqbrtrrd 4042 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))
7473ex 115 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((1 / (2↑𝑘)) < (𝐹𝑘) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1))))
7574expcom 116 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((1 / (2↑𝑘)) < (𝐹𝑘) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))))
7675a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝜑 → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))))
775, 10, 15, 20, 38, 76nnind 8966 . 2 (𝑁 ∈ ℕ → (𝜑 → (1 / (2↑𝑁)) < (𝐹𝑁)))
7877impcom 125 1 ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  {csn 3607   class class class wbr 4018   × cxp 4642  cfv 5235  (class class class)co 5897  cmpo 5899  cr 7841  0cc0 7842  1c1 7843   + caddc 7845   · cmul 7847   < clt 8023  cle 8024   / cdiv 8660  cn 8950  2c2 9001  0cn0 9207  cz 9284  +crp 9685  seqcseq 10478  cexp 10553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-n0 9208  df-z 9285  df-uz 9560  df-rp 9686  df-seqfrec 10479  df-exp 10554
This theorem is referenced by:  resqrexlemnm  11062
  Copyright terms: Public domain W3C validator