| Step | Hyp | Ref
 | Expression | 
| 1 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑤 = 1 → (2↑𝑤) = (2↑1)) | 
| 2 | 1 | oveq2d 5938 | 
. . . . 5
⊢ (𝑤 = 1 → (1 / (2↑𝑤)) = (1 /
(2↑1))) | 
| 3 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑤 = 1 → (𝐹‘𝑤) = (𝐹‘1)) | 
| 4 | 2, 3 | breq12d 4046 | 
. . . 4
⊢ (𝑤 = 1 → ((1 / (2↑𝑤)) < (𝐹‘𝑤) ↔ (1 / (2↑1)) < (𝐹‘1))) | 
| 5 | 4 | imbi2d 230 | 
. . 3
⊢ (𝑤 = 1 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹‘𝑤)) ↔ (𝜑 → (1 / (2↑1)) < (𝐹‘1)))) | 
| 6 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑤 = 𝑘 → (2↑𝑤) = (2↑𝑘)) | 
| 7 | 6 | oveq2d 5938 | 
. . . . 5
⊢ (𝑤 = 𝑘 → (1 / (2↑𝑤)) = (1 / (2↑𝑘))) | 
| 8 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑤 = 𝑘 → (𝐹‘𝑤) = (𝐹‘𝑘)) | 
| 9 | 7, 8 | breq12d 4046 | 
. . . 4
⊢ (𝑤 = 𝑘 → ((1 / (2↑𝑤)) < (𝐹‘𝑤) ↔ (1 / (2↑𝑘)) < (𝐹‘𝑘))) | 
| 10 | 9 | imbi2d 230 | 
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹‘𝑤)) ↔ (𝜑 → (1 / (2↑𝑘)) < (𝐹‘𝑘)))) | 
| 11 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑤 = (𝑘 + 1) → (2↑𝑤) = (2↑(𝑘 + 1))) | 
| 12 | 11 | oveq2d 5938 | 
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (1 / (2↑𝑤)) = (1 / (2↑(𝑘 + 1)))) | 
| 13 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (𝐹‘𝑤) = (𝐹‘(𝑘 + 1))) | 
| 14 | 12, 13 | breq12d 4046 | 
. . . 4
⊢ (𝑤 = (𝑘 + 1) → ((1 / (2↑𝑤)) < (𝐹‘𝑤) ↔ (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))) | 
| 15 | 14 | imbi2d 230 | 
. . 3
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → (1 / (2↑𝑤)) < (𝐹‘𝑤)) ↔ (𝜑 → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1))))) | 
| 16 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑤 = 𝑁 → (2↑𝑤) = (2↑𝑁)) | 
| 17 | 16 | oveq2d 5938 | 
. . . . 5
⊢ (𝑤 = 𝑁 → (1 / (2↑𝑤)) = (1 / (2↑𝑁))) | 
| 18 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑤 = 𝑁 → (𝐹‘𝑤) = (𝐹‘𝑁)) | 
| 19 | 17, 18 | breq12d 4046 | 
. . . 4
⊢ (𝑤 = 𝑁 → ((1 / (2↑𝑤)) < (𝐹‘𝑤) ↔ (1 / (2↑𝑁)) < (𝐹‘𝑁))) | 
| 20 | 19 | imbi2d 230 | 
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹‘𝑤)) ↔ (𝜑 → (1 / (2↑𝑁)) < (𝐹‘𝑁)))) | 
| 21 |   | 2cnd 9063 | 
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℂ) | 
| 22 | 21 | exp1d 10760 | 
. . . . . . 7
⊢ (𝜑 → (2↑1) =
2) | 
| 23 |   | 2rp 9733 | 
. . . . . . 7
⊢ 2 ∈
ℝ+ | 
| 24 | 22, 23 | eqeltrdi 2287 | 
. . . . . 6
⊢ (𝜑 → (2↑1) ∈
ℝ+) | 
| 25 | 24 | rprecred 9783 | 
. . . . 5
⊢ (𝜑 → (1 / (2↑1)) ∈
ℝ) | 
| 26 |   | 1red 8041 | 
. . . . 5
⊢ (𝜑 → 1 ∈
ℝ) | 
| 27 |   | resqrexlemex.a | 
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 28 | 26, 27 | readdcld 8056 | 
. . . . 5
⊢ (𝜑 → (1 + 𝐴) ∈ ℝ) | 
| 29 | 22 | oveq2d 5938 | 
. . . . . 6
⊢ (𝜑 → (1 / (2↑1)) = (1 /
2)) | 
| 30 |   | halflt1 9208 | 
. . . . . 6
⊢ (1 / 2)
< 1 | 
| 31 | 29, 30 | eqbrtrdi 4072 | 
. . . . 5
⊢ (𝜑 → (1 / (2↑1)) <
1) | 
| 32 |   | resqrexlemex.agt0 | 
. . . . . 6
⊢ (𝜑 → 0 ≤ 𝐴) | 
| 33 | 26, 27 | addge01d 8560 | 
. . . . . 6
⊢ (𝜑 → (0 ≤ 𝐴 ↔ 1 ≤ (1 + 𝐴))) | 
| 34 | 32, 33 | mpbid 147 | 
. . . . 5
⊢ (𝜑 → 1 ≤ (1 + 𝐴)) | 
| 35 | 25, 26, 28, 31, 34 | ltletrd 8450 | 
. . . 4
⊢ (𝜑 → (1 / (2↑1)) < (1 +
𝐴)) | 
| 36 |   | resqrexlemex.seq | 
. . . . 5
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) | 
| 37 | 36, 27, 32 | resqrexlemf1 11173 | 
. . . 4
⊢ (𝜑 → (𝐹‘1) = (1 + 𝐴)) | 
| 38 | 35, 37 | breqtrrd 4061 | 
. . 3
⊢ (𝜑 → (1 / (2↑1)) <
(𝐹‘1)) | 
| 39 | 23 | a1i 9 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → 2 ∈
ℝ+) | 
| 40 |   | nnz 9345 | 
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) | 
| 41 | 40 | ad2antlr 489 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → 𝑘 ∈ ℤ) | 
| 42 | 39, 41 | rpexpcld 10789 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → (2↑𝑘) ∈
ℝ+) | 
| 43 | 42 | rpcnd 9773 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → (2↑𝑘) ∈ ℂ) | 
| 44 |   | 2cnd 9063 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → 2 ∈ ℂ) | 
| 45 | 42 | rpap0d 9777 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → (2↑𝑘) # 0) | 
| 46 | 39 | rpap0d 9777 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → 2 # 0) | 
| 47 | 43, 44, 45, 46 | recdivap2d 8835 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → ((1 / (2↑𝑘)) / 2) = (1 / ((2↑𝑘) · 2))) | 
| 48 |   | nnnn0 9256 | 
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) | 
| 49 | 48 | ad2antlr 489 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → 𝑘 ∈ ℕ0) | 
| 50 | 44, 49 | expp1d 10766 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2)) | 
| 51 | 50 | oveq2d 5938 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → (1 / (2↑(𝑘 + 1))) = (1 / ((2↑𝑘) · 2))) | 
| 52 | 47, 51 | eqtr4d 2232 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → ((1 / (2↑𝑘)) / 2) = (1 / (2↑(𝑘 + 1)))) | 
| 53 | 42 | rprecred 9783 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → (1 / (2↑𝑘)) ∈ ℝ) | 
| 54 | 36, 27, 32 | resqrexlemf 11172 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) | 
| 55 | 54 | ffvelcdmda 5697 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈
ℝ+) | 
| 56 | 55 | rpred 9771 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) | 
| 57 | 56 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → (𝐹‘𝑘) ∈ ℝ) | 
| 58 | 27 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ) | 
| 59 | 58, 55 | rerpdivcld 9803 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 / (𝐹‘𝑘)) ∈ ℝ) | 
| 60 | 59 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → (𝐴 / (𝐹‘𝑘)) ∈ ℝ) | 
| 61 | 57, 60 | readdcld 8056 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → ((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) ∈ ℝ) | 
| 62 |   | simpr 110 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → (1 / (2↑𝑘)) < (𝐹‘𝑘)) | 
| 63 | 32 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴) | 
| 64 | 58, 55, 63 | divge0d 9812 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐴 / (𝐹‘𝑘))) | 
| 65 | 56, 59 | addge01d 8560 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (0 ≤ (𝐴 / (𝐹‘𝑘)) ↔ (𝐹‘𝑘) ≤ ((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))))) | 
| 66 | 64, 65 | mpbid 147 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ≤ ((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))) | 
| 67 | 66 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → (𝐹‘𝑘) ≤ ((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))) | 
| 68 | 53, 57, 61, 62, 67 | ltletrd 8450 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → (1 / (2↑𝑘)) < ((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘)))) | 
| 69 | 53, 61, 39, 68 | ltdiv1dd 9829 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → ((1 / (2↑𝑘)) / 2) < (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) / 2)) | 
| 70 | 36, 27, 32 | resqrexlemfp1 11174 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) = (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) / 2)) | 
| 71 | 70 | adantr 276 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → (𝐹‘(𝑘 + 1)) = (((𝐹‘𝑘) + (𝐴 / (𝐹‘𝑘))) / 2)) | 
| 72 | 69, 71 | breqtrrd 4061 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → ((1 / (2↑𝑘)) / 2) < (𝐹‘(𝑘 + 1))) | 
| 73 | 52, 72 | eqbrtrrd 4057 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹‘𝑘)) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1))) | 
| 74 | 73 | ex 115 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 / (2↑𝑘)) < (𝐹‘𝑘) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))) | 
| 75 | 74 | expcom 116 | 
. . . 4
⊢ (𝑘 ∈ ℕ → (𝜑 → ((1 / (2↑𝑘)) < (𝐹‘𝑘) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1))))) | 
| 76 | 75 | a2d 26 | 
. . 3
⊢ (𝑘 ∈ ℕ → ((𝜑 → (1 / (2↑𝑘)) < (𝐹‘𝑘)) → (𝜑 → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1))))) | 
| 77 | 5, 10, 15, 20, 38, 76 | nnind 9006 | 
. 2
⊢ (𝑁 ∈ ℕ → (𝜑 → (1 / (2↑𝑁)) < (𝐹‘𝑁))) | 
| 78 | 77 | impcom 125 | 
1
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹‘𝑁)) |