ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemlo GIF version

Theorem resqrexlemlo 10964
Description: Lemma for resqrex 10977. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemlo ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemlo
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5858 . . . . . 6 (𝑤 = 1 → (2↑𝑤) = (2↑1))
21oveq2d 5866 . . . . 5 (𝑤 = 1 → (1 / (2↑𝑤)) = (1 / (2↑1)))
3 fveq2 5494 . . . . 5 (𝑤 = 1 → (𝐹𝑤) = (𝐹‘1))
42, 3breq12d 4000 . . . 4 (𝑤 = 1 → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑1)) < (𝐹‘1)))
54imbi2d 229 . . 3 (𝑤 = 1 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑1)) < (𝐹‘1))))
6 oveq2 5858 . . . . . 6 (𝑤 = 𝑘 → (2↑𝑤) = (2↑𝑘))
76oveq2d 5866 . . . . 5 (𝑤 = 𝑘 → (1 / (2↑𝑤)) = (1 / (2↑𝑘)))
8 fveq2 5494 . . . . 5 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
97, 8breq12d 4000 . . . 4 (𝑤 = 𝑘 → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑𝑘)) < (𝐹𝑘)))
109imbi2d 229 . . 3 (𝑤 = 𝑘 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑𝑘)) < (𝐹𝑘))))
11 oveq2 5858 . . . . . 6 (𝑤 = (𝑘 + 1) → (2↑𝑤) = (2↑(𝑘 + 1)))
1211oveq2d 5866 . . . . 5 (𝑤 = (𝑘 + 1) → (1 / (2↑𝑤)) = (1 / (2↑(𝑘 + 1))))
13 fveq2 5494 . . . . 5 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
1412, 13breq12d 4000 . . . 4 (𝑤 = (𝑘 + 1) → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1))))
1514imbi2d 229 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))))
16 oveq2 5858 . . . . . 6 (𝑤 = 𝑁 → (2↑𝑤) = (2↑𝑁))
1716oveq2d 5866 . . . . 5 (𝑤 = 𝑁 → (1 / (2↑𝑤)) = (1 / (2↑𝑁)))
18 fveq2 5494 . . . . 5 (𝑤 = 𝑁 → (𝐹𝑤) = (𝐹𝑁))
1917, 18breq12d 4000 . . . 4 (𝑤 = 𝑁 → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑𝑁)) < (𝐹𝑁)))
2019imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑𝑁)) < (𝐹𝑁))))
21 2cnd 8938 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
2221exp1d 10591 . . . . . . 7 (𝜑 → (2↑1) = 2)
23 2rp 9602 . . . . . . 7 2 ∈ ℝ+
2422, 23eqeltrdi 2261 . . . . . 6 (𝜑 → (2↑1) ∈ ℝ+)
2524rprecred 9652 . . . . 5 (𝜑 → (1 / (2↑1)) ∈ ℝ)
26 1red 7922 . . . . 5 (𝜑 → 1 ∈ ℝ)
27 resqrexlemex.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2826, 27readdcld 7936 . . . . 5 (𝜑 → (1 + 𝐴) ∈ ℝ)
2922oveq2d 5866 . . . . . 6 (𝜑 → (1 / (2↑1)) = (1 / 2))
30 halflt1 9082 . . . . . 6 (1 / 2) < 1
3129, 30eqbrtrdi 4026 . . . . 5 (𝜑 → (1 / (2↑1)) < 1)
32 resqrexlemex.agt0 . . . . . 6 (𝜑 → 0 ≤ 𝐴)
3326, 27addge01d 8439 . . . . . 6 (𝜑 → (0 ≤ 𝐴 ↔ 1 ≤ (1 + 𝐴)))
3432, 33mpbid 146 . . . . 5 (𝜑 → 1 ≤ (1 + 𝐴))
3525, 26, 28, 31, 34ltletrd 8329 . . . 4 (𝜑 → (1 / (2↑1)) < (1 + 𝐴))
36 resqrexlemex.seq . . . . 5 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
3736, 27, 32resqrexlemf1 10959 . . . 4 (𝜑 → (𝐹‘1) = (1 + 𝐴))
3835, 37breqtrrd 4015 . . 3 (𝜑 → (1 / (2↑1)) < (𝐹‘1))
3923a1i 9 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 2 ∈ ℝ+)
40 nnz 9218 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
4140ad2antlr 486 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 𝑘 ∈ ℤ)
4239, 41rpexpcld 10620 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑𝑘) ∈ ℝ+)
4342rpcnd 9642 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑𝑘) ∈ ℂ)
44 2cnd 8938 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 2 ∈ ℂ)
4542rpap0d 9646 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑𝑘) # 0)
4639rpap0d 9646 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 2 # 0)
4743, 44, 45, 46recdivap2d 8712 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) = (1 / ((2↑𝑘) · 2)))
48 nnnn0 9129 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
4948ad2antlr 486 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 𝑘 ∈ ℕ0)
5044, 49expp1d 10597 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2))
5150oveq2d 5866 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑(𝑘 + 1))) = (1 / ((2↑𝑘) · 2)))
5247, 51eqtr4d 2206 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) = (1 / (2↑(𝑘 + 1))))
5342rprecred 9652 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑𝑘)) ∈ ℝ)
5436, 27, 32resqrexlemf 10958 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶ℝ+)
5554ffvelrnda 5628 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ+)
5655rpred 9640 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
5756adantr 274 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ)
5827adantr 274 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
5958, 55rerpdivcld 9672 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴 / (𝐹𝑘)) ∈ ℝ)
6059adantr 274 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐴 / (𝐹𝑘)) ∈ ℝ)
6157, 60readdcld 7936 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((𝐹𝑘) + (𝐴 / (𝐹𝑘))) ∈ ℝ)
62 simpr 109 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑𝑘)) < (𝐹𝑘))
6332adantr 274 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 0 ≤ 𝐴)
6458, 55, 63divge0d 9681 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐴 / (𝐹𝑘)))
6556, 59addge01d 8439 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (0 ≤ (𝐴 / (𝐹𝑘)) ↔ (𝐹𝑘) ≤ ((𝐹𝑘) + (𝐴 / (𝐹𝑘)))))
6664, 65mpbid 146 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ≤ ((𝐹𝑘) + (𝐴 / (𝐹𝑘))))
6766adantr 274 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐹𝑘) ≤ ((𝐹𝑘) + (𝐴 / (𝐹𝑘))))
6853, 57, 61, 62, 67ltletrd 8329 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑𝑘)) < ((𝐹𝑘) + (𝐴 / (𝐹𝑘))))
6953, 61, 39, 68ltdiv1dd 9698 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) < (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
7036, 27, 32resqrexlemfp1 10960 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) = (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
7170adantr 274 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) = (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
7269, 71breqtrrd 4015 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) < (𝐹‘(𝑘 + 1)))
7352, 72eqbrtrrd 4011 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))
7473ex 114 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((1 / (2↑𝑘)) < (𝐹𝑘) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1))))
7574expcom 115 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((1 / (2↑𝑘)) < (𝐹𝑘) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))))
7675a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝜑 → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))))
775, 10, 15, 20, 38, 76nnind 8881 . 2 (𝑁 ∈ ℕ → (𝜑 → (1 / (2↑𝑁)) < (𝐹𝑁)))
7877impcom 124 1 ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  {csn 3581   class class class wbr 3987   × cxp 4607  cfv 5196  (class class class)co 5850  cmpo 5852  cr 7760  0cc0 7761  1c1 7762   + caddc 7764   · cmul 7766   < clt 7941  cle 7942   / cdiv 8576  cn 8865  2c2 8916  0cn0 9122  cz 9199  +crp 9597  seqcseq 10388  cexp 10462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-n0 9123  df-z 9200  df-uz 9475  df-rp 9598  df-seqfrec 10389  df-exp 10463
This theorem is referenced by:  resqrexlemnm  10969
  Copyright terms: Public domain W3C validator