ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemlo GIF version

Theorem resqrexlemlo 11006
Description: Lemma for resqrex 11019. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemlo ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemlo
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5877 . . . . . 6 (𝑤 = 1 → (2↑𝑤) = (2↑1))
21oveq2d 5885 . . . . 5 (𝑤 = 1 → (1 / (2↑𝑤)) = (1 / (2↑1)))
3 fveq2 5511 . . . . 5 (𝑤 = 1 → (𝐹𝑤) = (𝐹‘1))
42, 3breq12d 4013 . . . 4 (𝑤 = 1 → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑1)) < (𝐹‘1)))
54imbi2d 230 . . 3 (𝑤 = 1 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑1)) < (𝐹‘1))))
6 oveq2 5877 . . . . . 6 (𝑤 = 𝑘 → (2↑𝑤) = (2↑𝑘))
76oveq2d 5885 . . . . 5 (𝑤 = 𝑘 → (1 / (2↑𝑤)) = (1 / (2↑𝑘)))
8 fveq2 5511 . . . . 5 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
97, 8breq12d 4013 . . . 4 (𝑤 = 𝑘 → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑𝑘)) < (𝐹𝑘)))
109imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑𝑘)) < (𝐹𝑘))))
11 oveq2 5877 . . . . . 6 (𝑤 = (𝑘 + 1) → (2↑𝑤) = (2↑(𝑘 + 1)))
1211oveq2d 5885 . . . . 5 (𝑤 = (𝑘 + 1) → (1 / (2↑𝑤)) = (1 / (2↑(𝑘 + 1))))
13 fveq2 5511 . . . . 5 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
1412, 13breq12d 4013 . . . 4 (𝑤 = (𝑘 + 1) → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1))))
1514imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))))
16 oveq2 5877 . . . . . 6 (𝑤 = 𝑁 → (2↑𝑤) = (2↑𝑁))
1716oveq2d 5885 . . . . 5 (𝑤 = 𝑁 → (1 / (2↑𝑤)) = (1 / (2↑𝑁)))
18 fveq2 5511 . . . . 5 (𝑤 = 𝑁 → (𝐹𝑤) = (𝐹𝑁))
1917, 18breq12d 4013 . . . 4 (𝑤 = 𝑁 → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑𝑁)) < (𝐹𝑁)))
2019imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑𝑁)) < (𝐹𝑁))))
21 2cnd 8981 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
2221exp1d 10634 . . . . . . 7 (𝜑 → (2↑1) = 2)
23 2rp 9645 . . . . . . 7 2 ∈ ℝ+
2422, 23eqeltrdi 2268 . . . . . 6 (𝜑 → (2↑1) ∈ ℝ+)
2524rprecred 9695 . . . . 5 (𝜑 → (1 / (2↑1)) ∈ ℝ)
26 1red 7963 . . . . 5 (𝜑 → 1 ∈ ℝ)
27 resqrexlemex.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2826, 27readdcld 7977 . . . . 5 (𝜑 → (1 + 𝐴) ∈ ℝ)
2922oveq2d 5885 . . . . . 6 (𝜑 → (1 / (2↑1)) = (1 / 2))
30 halflt1 9125 . . . . . 6 (1 / 2) < 1
3129, 30eqbrtrdi 4039 . . . . 5 (𝜑 → (1 / (2↑1)) < 1)
32 resqrexlemex.agt0 . . . . . 6 (𝜑 → 0 ≤ 𝐴)
3326, 27addge01d 8480 . . . . . 6 (𝜑 → (0 ≤ 𝐴 ↔ 1 ≤ (1 + 𝐴)))
3432, 33mpbid 147 . . . . 5 (𝜑 → 1 ≤ (1 + 𝐴))
3525, 26, 28, 31, 34ltletrd 8370 . . . 4 (𝜑 → (1 / (2↑1)) < (1 + 𝐴))
36 resqrexlemex.seq . . . . 5 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
3736, 27, 32resqrexlemf1 11001 . . . 4 (𝜑 → (𝐹‘1) = (1 + 𝐴))
3835, 37breqtrrd 4028 . . 3 (𝜑 → (1 / (2↑1)) < (𝐹‘1))
3923a1i 9 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 2 ∈ ℝ+)
40 nnz 9261 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
4140ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 𝑘 ∈ ℤ)
4239, 41rpexpcld 10663 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑𝑘) ∈ ℝ+)
4342rpcnd 9685 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑𝑘) ∈ ℂ)
44 2cnd 8981 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 2 ∈ ℂ)
4542rpap0d 9689 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑𝑘) # 0)
4639rpap0d 9689 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 2 # 0)
4743, 44, 45, 46recdivap2d 8754 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) = (1 / ((2↑𝑘) · 2)))
48 nnnn0 9172 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
4948ad2antlr 489 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 𝑘 ∈ ℕ0)
5044, 49expp1d 10640 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2))
5150oveq2d 5885 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑(𝑘 + 1))) = (1 / ((2↑𝑘) · 2)))
5247, 51eqtr4d 2213 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) = (1 / (2↑(𝑘 + 1))))
5342rprecred 9695 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑𝑘)) ∈ ℝ)
5436, 27, 32resqrexlemf 11000 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶ℝ+)
5554ffvelcdmda 5647 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ+)
5655rpred 9683 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
5756adantr 276 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ)
5827adantr 276 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
5958, 55rerpdivcld 9715 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴 / (𝐹𝑘)) ∈ ℝ)
6059adantr 276 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐴 / (𝐹𝑘)) ∈ ℝ)
6157, 60readdcld 7977 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((𝐹𝑘) + (𝐴 / (𝐹𝑘))) ∈ ℝ)
62 simpr 110 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑𝑘)) < (𝐹𝑘))
6332adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 0 ≤ 𝐴)
6458, 55, 63divge0d 9724 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐴 / (𝐹𝑘)))
6556, 59addge01d 8480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (0 ≤ (𝐴 / (𝐹𝑘)) ↔ (𝐹𝑘) ≤ ((𝐹𝑘) + (𝐴 / (𝐹𝑘)))))
6664, 65mpbid 147 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ≤ ((𝐹𝑘) + (𝐴 / (𝐹𝑘))))
6766adantr 276 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐹𝑘) ≤ ((𝐹𝑘) + (𝐴 / (𝐹𝑘))))
6853, 57, 61, 62, 67ltletrd 8370 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑𝑘)) < ((𝐹𝑘) + (𝐴 / (𝐹𝑘))))
6953, 61, 39, 68ltdiv1dd 9741 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) < (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
7036, 27, 32resqrexlemfp1 11002 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) = (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
7170adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) = (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
7269, 71breqtrrd 4028 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) < (𝐹‘(𝑘 + 1)))
7352, 72eqbrtrrd 4024 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))
7473ex 115 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((1 / (2↑𝑘)) < (𝐹𝑘) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1))))
7574expcom 116 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((1 / (2↑𝑘)) < (𝐹𝑘) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))))
7675a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝜑 → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))))
775, 10, 15, 20, 38, 76nnind 8924 . 2 (𝑁 ∈ ℕ → (𝜑 → (1 / (2↑𝑁)) < (𝐹𝑁)))
7877impcom 125 1 ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  {csn 3591   class class class wbr 4000   × cxp 4621  cfv 5212  (class class class)co 5869  cmpo 5871  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983   / cdiv 8618  cn 8908  2c2 8959  0cn0 9165  cz 9242  +crp 9640  seqcseq 10431  cexp 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506
This theorem is referenced by:  resqrexlemnm  11011
  Copyright terms: Public domain W3C validator