ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemlo GIF version

Theorem resqrexlemlo 10817
Description: Lemma for resqrex 10830. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemlo ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemlo
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5790 . . . . . 6 (𝑤 = 1 → (2↑𝑤) = (2↑1))
21oveq2d 5798 . . . . 5 (𝑤 = 1 → (1 / (2↑𝑤)) = (1 / (2↑1)))
3 fveq2 5429 . . . . 5 (𝑤 = 1 → (𝐹𝑤) = (𝐹‘1))
42, 3breq12d 3950 . . . 4 (𝑤 = 1 → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑1)) < (𝐹‘1)))
54imbi2d 229 . . 3 (𝑤 = 1 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑1)) < (𝐹‘1))))
6 oveq2 5790 . . . . . 6 (𝑤 = 𝑘 → (2↑𝑤) = (2↑𝑘))
76oveq2d 5798 . . . . 5 (𝑤 = 𝑘 → (1 / (2↑𝑤)) = (1 / (2↑𝑘)))
8 fveq2 5429 . . . . 5 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
97, 8breq12d 3950 . . . 4 (𝑤 = 𝑘 → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑𝑘)) < (𝐹𝑘)))
109imbi2d 229 . . 3 (𝑤 = 𝑘 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑𝑘)) < (𝐹𝑘))))
11 oveq2 5790 . . . . . 6 (𝑤 = (𝑘 + 1) → (2↑𝑤) = (2↑(𝑘 + 1)))
1211oveq2d 5798 . . . . 5 (𝑤 = (𝑘 + 1) → (1 / (2↑𝑤)) = (1 / (2↑(𝑘 + 1))))
13 fveq2 5429 . . . . 5 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
1412, 13breq12d 3950 . . . 4 (𝑤 = (𝑘 + 1) → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1))))
1514imbi2d 229 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))))
16 oveq2 5790 . . . . . 6 (𝑤 = 𝑁 → (2↑𝑤) = (2↑𝑁))
1716oveq2d 5798 . . . . 5 (𝑤 = 𝑁 → (1 / (2↑𝑤)) = (1 / (2↑𝑁)))
18 fveq2 5429 . . . . 5 (𝑤 = 𝑁 → (𝐹𝑤) = (𝐹𝑁))
1917, 18breq12d 3950 . . . 4 (𝑤 = 𝑁 → ((1 / (2↑𝑤)) < (𝐹𝑤) ↔ (1 / (2↑𝑁)) < (𝐹𝑁)))
2019imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → (1 / (2↑𝑤)) < (𝐹𝑤)) ↔ (𝜑 → (1 / (2↑𝑁)) < (𝐹𝑁))))
21 2cnd 8817 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
2221exp1d 10450 . . . . . . 7 (𝜑 → (2↑1) = 2)
23 2rp 9475 . . . . . . 7 2 ∈ ℝ+
2422, 23eqeltrdi 2231 . . . . . 6 (𝜑 → (2↑1) ∈ ℝ+)
2524rprecred 9525 . . . . 5 (𝜑 → (1 / (2↑1)) ∈ ℝ)
26 1red 7805 . . . . 5 (𝜑 → 1 ∈ ℝ)
27 resqrexlemex.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2826, 27readdcld 7819 . . . . 5 (𝜑 → (1 + 𝐴) ∈ ℝ)
2922oveq2d 5798 . . . . . 6 (𝜑 → (1 / (2↑1)) = (1 / 2))
30 halflt1 8961 . . . . . 6 (1 / 2) < 1
3129, 30eqbrtrdi 3975 . . . . 5 (𝜑 → (1 / (2↑1)) < 1)
32 resqrexlemex.agt0 . . . . . 6 (𝜑 → 0 ≤ 𝐴)
3326, 27addge01d 8319 . . . . . 6 (𝜑 → (0 ≤ 𝐴 ↔ 1 ≤ (1 + 𝐴)))
3432, 33mpbid 146 . . . . 5 (𝜑 → 1 ≤ (1 + 𝐴))
3525, 26, 28, 31, 34ltletrd 8209 . . . 4 (𝜑 → (1 / (2↑1)) < (1 + 𝐴))
36 resqrexlemex.seq . . . . 5 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
3736, 27, 32resqrexlemf1 10812 . . . 4 (𝜑 → (𝐹‘1) = (1 + 𝐴))
3835, 37breqtrrd 3964 . . 3 (𝜑 → (1 / (2↑1)) < (𝐹‘1))
3923a1i 9 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 2 ∈ ℝ+)
40 nnz 9097 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
4140ad2antlr 481 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 𝑘 ∈ ℤ)
4239, 41rpexpcld 10479 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑𝑘) ∈ ℝ+)
4342rpcnd 9515 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑𝑘) ∈ ℂ)
44 2cnd 8817 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 2 ∈ ℂ)
4542rpap0d 9519 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑𝑘) # 0)
4639rpap0d 9519 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 2 # 0)
4743, 44, 45, 46recdivap2d 8592 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) = (1 / ((2↑𝑘) · 2)))
48 nnnn0 9008 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
4948ad2antlr 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → 𝑘 ∈ ℕ0)
5044, 49expp1d 10456 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2))
5150oveq2d 5798 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑(𝑘 + 1))) = (1 / ((2↑𝑘) · 2)))
5247, 51eqtr4d 2176 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) = (1 / (2↑(𝑘 + 1))))
5342rprecred 9525 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑𝑘)) ∈ ℝ)
5436, 27, 32resqrexlemf 10811 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶ℝ+)
5554ffvelrnda 5563 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ+)
5655rpred 9513 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
5756adantr 274 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ)
5827adantr 274 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
5958, 55rerpdivcld 9545 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐴 / (𝐹𝑘)) ∈ ℝ)
6059adantr 274 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐴 / (𝐹𝑘)) ∈ ℝ)
6157, 60readdcld 7819 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((𝐹𝑘) + (𝐴 / (𝐹𝑘))) ∈ ℝ)
62 simpr 109 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑𝑘)) < (𝐹𝑘))
6332adantr 274 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 0 ≤ 𝐴)
6458, 55, 63divge0d 9554 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐴 / (𝐹𝑘)))
6556, 59addge01d 8319 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (0 ≤ (𝐴 / (𝐹𝑘)) ↔ (𝐹𝑘) ≤ ((𝐹𝑘) + (𝐴 / (𝐹𝑘)))))
6664, 65mpbid 146 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ≤ ((𝐹𝑘) + (𝐴 / (𝐹𝑘))))
6766adantr 274 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐹𝑘) ≤ ((𝐹𝑘) + (𝐴 / (𝐹𝑘))))
6853, 57, 61, 62, 67ltletrd 8209 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑𝑘)) < ((𝐹𝑘) + (𝐴 / (𝐹𝑘))))
6953, 61, 39, 68ltdiv1dd 9571 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) < (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
7036, 27, 32resqrexlemfp1 10813 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) = (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
7170adantr 274 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) = (((𝐹𝑘) + (𝐴 / (𝐹𝑘))) / 2))
7269, 71breqtrrd 3964 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → ((1 / (2↑𝑘)) / 2) < (𝐹‘(𝑘 + 1)))
7352, 72eqbrtrrd 3960 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 / (2↑𝑘)) < (𝐹𝑘)) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))
7473ex 114 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((1 / (2↑𝑘)) < (𝐹𝑘) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1))))
7574expcom 115 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((1 / (2↑𝑘)) < (𝐹𝑘) → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))))
7675a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (1 / (2↑𝑘)) < (𝐹𝑘)) → (𝜑 → (1 / (2↑(𝑘 + 1))) < (𝐹‘(𝑘 + 1)))))
775, 10, 15, 20, 38, 76nnind 8760 . 2 (𝑁 ∈ ℕ → (𝜑 → (1 / (2↑𝑁)) < (𝐹𝑁)))
7877impcom 124 1 ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  {csn 3532   class class class wbr 3937   × cxp 4545  cfv 5131  (class class class)co 5782  cmpo 5784  cr 7643  0cc0 7644  1c1 7645   + caddc 7647   · cmul 7649   < clt 7824  cle 7825   / cdiv 8456  cn 8744  2c2 8795  0cn0 9001  cz 9078  +crp 9470  seqcseq 10249  cexp 10323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324
This theorem is referenced by:  resqrexlemnm  10822
  Copyright terms: Public domain W3C validator