| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en1top | GIF version | ||
| Description: {∅} is the only topology with one element. (Contributed by FL, 18-Aug-2008.) |
| Ref | Expression |
|---|---|
| en1top | ⊢ (𝐽 ∈ Top → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0opn 14680 | . . 3 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
| 2 | en1eqsn 7115 | . . . 4 ⊢ ((∅ ∈ 𝐽 ∧ 𝐽 ≈ 1o) → 𝐽 = {∅}) | |
| 3 | 2 | ex 115 | . . 3 ⊢ (∅ ∈ 𝐽 → (𝐽 ≈ 1o → 𝐽 = {∅})) |
| 4 | 1, 3 | syl 14 | . 2 ⊢ (𝐽 ∈ Top → (𝐽 ≈ 1o → 𝐽 = {∅})) |
| 5 | id 19 | . . 3 ⊢ (𝐽 = {∅} → 𝐽 = {∅}) | |
| 6 | 0ex 4211 | . . . 4 ⊢ ∅ ∈ V | |
| 7 | 6 | ensn1 6948 | . . 3 ⊢ {∅} ≈ 1o |
| 8 | 5, 7 | eqbrtrdi 4122 | . 2 ⊢ (𝐽 = {∅} → 𝐽 ≈ 1o) |
| 9 | 4, 8 | impbid1 142 | 1 ⊢ (𝐽 ∈ Top → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∅c0 3491 {csn 3666 class class class wbr 4083 1oc1o 6555 ≈ cen 6885 Topctop 14671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1o 6562 df-er 6680 df-en 6888 df-fin 6890 df-top 14672 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |