ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  faclbnd3 GIF version

Theorem faclbnd3 10677
Description: A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
faclbnd3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))

Proof of Theorem faclbnd3
StepHypRef Expression
1 elnn0 9137 . 2 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 nnre 8885 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
32adantr 274 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
4 nnge1 8901 . . . . . 6 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
54adantr 274 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 ≤ 𝑀)
6 nn0z 9232 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
76adantl 275 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
8 uzid 9501 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
9 peano2uz 9542 . . . . . 6 (𝑁 ∈ (ℤ𝑁) → (𝑁 + 1) ∈ (ℤ𝑁))
107, 8, 93syl 17 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (ℤ𝑁))
113, 5, 10leexp2ad 10638 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)))
12 nnnn0 9142 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
13 faclbnd 10675 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
1412, 13sylan 281 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
15 nn0re 9144 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
16 reexpcl 10493 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
1715, 16sylan 281 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℝ)
18 peano2nn0 9175 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
19 reexpcl 10493 . . . . . . 7 ((𝑀 ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ∈ ℝ)
2015, 18, 19syl2an 287 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ∈ ℝ)
21 reexpcl 10493 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑀𝑀) ∈ ℝ)
2215, 21mpancom 420 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀𝑀) ∈ ℝ)
23 faccl 10669 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2423nnred 8891 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
25 remulcl 7902 . . . . . . 7 (((𝑀𝑀) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → ((𝑀𝑀) · (!‘𝑁)) ∈ ℝ)
2622, 24, 25syl2an 287 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀𝑀) · (!‘𝑁)) ∈ ℝ)
27 letr 8002 . . . . . 6 (((𝑀𝑁) ∈ ℝ ∧ (𝑀↑(𝑁 + 1)) ∈ ℝ ∧ ((𝑀𝑀) · (!‘𝑁)) ∈ ℝ) → (((𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)) ∧ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁))))
2817, 20, 26, 27syl3anc 1233 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)) ∧ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁))))
2912, 28sylan 281 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝑀𝑁) ≤ (𝑀↑(𝑁 + 1)) ∧ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁))))
3011, 14, 29mp2and 431 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
31 elnn0 9137 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32 0exp 10511 . . . . . . . . 9 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
33 0le1 8400 . . . . . . . . 9 0 ≤ 1
3432, 33eqbrtrdi 4028 . . . . . . . 8 (𝑁 ∈ ℕ → (0↑𝑁) ≤ 1)
35 oveq2 5861 . . . . . . . . 9 (𝑁 = 0 → (0↑𝑁) = (0↑0))
36 0exp0e1 10481 . . . . . . . . . 10 (0↑0) = 1
37 1le1 8491 . . . . . . . . . 10 1 ≤ 1
3836, 37eqbrtri 4010 . . . . . . . . 9 (0↑0) ≤ 1
3935, 38eqbrtrdi 4028 . . . . . . . 8 (𝑁 = 0 → (0↑𝑁) ≤ 1)
4034, 39jaoi 711 . . . . . . 7 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0↑𝑁) ≤ 1)
4131, 40sylbi 120 . . . . . 6 (𝑁 ∈ ℕ0 → (0↑𝑁) ≤ 1)
42 1nn 8889 . . . . . . . 8 1 ∈ ℕ
43 nnmulcl 8899 . . . . . . . 8 ((1 ∈ ℕ ∧ (!‘𝑁) ∈ ℕ) → (1 · (!‘𝑁)) ∈ ℕ)
4442, 23, 43sylancr 412 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) ∈ ℕ)
4544nnge1d 8921 . . . . . 6 (𝑁 ∈ ℕ0 → 1 ≤ (1 · (!‘𝑁)))
46 0re 7920 . . . . . . . 8 0 ∈ ℝ
47 reexpcl 10493 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (0↑𝑁) ∈ ℝ)
4846, 47mpan 422 . . . . . . 7 (𝑁 ∈ ℕ0 → (0↑𝑁) ∈ ℝ)
49 1re 7919 . . . . . . . 8 1 ∈ ℝ
50 remulcl 7902 . . . . . . . 8 ((1 ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (1 · (!‘𝑁)) ∈ ℝ)
5149, 24, 50sylancr 412 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) ∈ ℝ)
52 letr 8002 . . . . . . . 8 (((0↑𝑁) ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 · (!‘𝑁)) ∈ ℝ) → (((0↑𝑁) ≤ 1 ∧ 1 ≤ (1 · (!‘𝑁))) → (0↑𝑁) ≤ (1 · (!‘𝑁))))
5349, 52mp3an2 1320 . . . . . . 7 (((0↑𝑁) ∈ ℝ ∧ (1 · (!‘𝑁)) ∈ ℝ) → (((0↑𝑁) ≤ 1 ∧ 1 ≤ (1 · (!‘𝑁))) → (0↑𝑁) ≤ (1 · (!‘𝑁))))
5448, 51, 53syl2anc 409 . . . . . 6 (𝑁 ∈ ℕ0 → (((0↑𝑁) ≤ 1 ∧ 1 ≤ (1 · (!‘𝑁))) → (0↑𝑁) ≤ (1 · (!‘𝑁))))
5541, 45, 54mp2and 431 . . . . 5 (𝑁 ∈ ℕ0 → (0↑𝑁) ≤ (1 · (!‘𝑁)))
5655adantl 275 . . . 4 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → (0↑𝑁) ≤ (1 · (!‘𝑁)))
57 oveq1 5860 . . . . . 6 (𝑀 = 0 → (𝑀𝑁) = (0↑𝑁))
58 oveq12 5862 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝑀 = 0) → (𝑀𝑀) = (0↑0))
5958anidms 395 . . . . . . . 8 (𝑀 = 0 → (𝑀𝑀) = (0↑0))
6059, 36eqtrdi 2219 . . . . . . 7 (𝑀 = 0 → (𝑀𝑀) = 1)
6160oveq1d 5868 . . . . . 6 (𝑀 = 0 → ((𝑀𝑀) · (!‘𝑁)) = (1 · (!‘𝑁)))
6257, 61breq12d 4002 . . . . 5 (𝑀 = 0 → ((𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)) ↔ (0↑𝑁) ≤ (1 · (!‘𝑁))))
6362adantr 274 . . . 4 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → ((𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)) ↔ (0↑𝑁) ≤ (1 · (!‘𝑁))))
6456, 63mpbird 166 . . 3 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
6530, 64jaoian 790 . 2 (((𝑀 ∈ ℕ ∨ 𝑀 = 0) ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
661, 65sylanb 282 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141   class class class wbr 3989  cfv 5198  (class class class)co 5853  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779  cle 7955  cn 8878  0cn0 9135  cz 9212  cuz 9487  cexp 10475  !cfa 10659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-fac 10660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator