Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0ledivnn | GIF version |
Description: Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021.) |
Ref | Expression |
---|---|
nn0ledivnn | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9137 | . . 3 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
2 | nnge1 8901 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 1 ≤ 𝐵) | |
3 | 2 | adantl 275 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 1 ≤ 𝐵) |
4 | nnrp 9620 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+) | |
5 | nnledivrp 9723 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴)) | |
6 | 4, 5 | sylan2 284 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴)) |
7 | 3, 6 | mpbid 146 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
8 | 7 | ex 114 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
9 | nncn 8886 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℂ) | |
10 | nnap0 8907 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℕ → 𝐵 # 0) | |
11 | 9, 10 | jca 304 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 # 0)) |
12 | 11 | adantl 275 | . . . . . . . 8 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 # 0)) |
13 | div0ap 8619 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → (0 / 𝐵) = 0) | |
14 | 12, 13 | syl 14 | . . . . . . 7 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (0 / 𝐵) = 0) |
15 | 0le0 8967 | . . . . . . 7 ⊢ 0 ≤ 0 | |
16 | 14, 15 | eqbrtrdi 4028 | . . . . . 6 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (0 / 𝐵) ≤ 0) |
17 | oveq1 5860 | . . . . . . . 8 ⊢ (𝐴 = 0 → (𝐴 / 𝐵) = (0 / 𝐵)) | |
18 | id 19 | . . . . . . . 8 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
19 | 17, 18 | breq12d 4002 | . . . . . . 7 ⊢ (𝐴 = 0 → ((𝐴 / 𝐵) ≤ 𝐴 ↔ (0 / 𝐵) ≤ 0)) |
20 | 19 | adantr 274 | . . . . . 6 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ≤ 𝐴 ↔ (0 / 𝐵) ≤ 0)) |
21 | 16, 20 | mpbird 166 | . . . . 5 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
22 | 21 | ex 114 | . . . 4 ⊢ (𝐴 = 0 → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
23 | 8, 22 | jaoi 711 | . . 3 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
24 | 1, 23 | sylbi 120 | . 2 ⊢ (𝐴 ∈ ℕ0 → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
25 | 24 | imp 123 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 ℂcc 7772 0cc0 7774 1c1 7775 ≤ cle 7955 # cap 8500 / cdiv 8589 ℕcn 8878 ℕ0cn0 9135 ℝ+crp 9610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-rp 9611 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |