ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ledivnn GIF version

Theorem nn0ledivnn 9836
Description: Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
nn0ledivnn ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴)

Proof of Theorem nn0ledivnn
StepHypRef Expression
1 elnn0 9245 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 nnge1 9007 . . . . . . 7 (𝐵 ∈ ℕ → 1 ≤ 𝐵)
32adantl 277 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 1 ≤ 𝐵)
4 nnrp 9732 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
5 nnledivrp 9835 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴))
64, 5sylan2 286 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴))
73, 6mpbid 147 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴)
87ex 115 . . . 4 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴))
9 nncn 8992 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
10 nnap0 9013 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 # 0)
119, 10jca 306 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 # 0))
1211adantl 277 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 # 0))
13 div0ap 8723 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → (0 / 𝐵) = 0)
1412, 13syl 14 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (0 / 𝐵) = 0)
15 0le0 9073 . . . . . . 7 0 ≤ 0
1614, 15eqbrtrdi 4069 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (0 / 𝐵) ≤ 0)
17 oveq1 5926 . . . . . . . 8 (𝐴 = 0 → (𝐴 / 𝐵) = (0 / 𝐵))
18 id 19 . . . . . . . 8 (𝐴 = 0 → 𝐴 = 0)
1917, 18breq12d 4043 . . . . . . 7 (𝐴 = 0 → ((𝐴 / 𝐵) ≤ 𝐴 ↔ (0 / 𝐵) ≤ 0))
2019adantr 276 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ≤ 𝐴 ↔ (0 / 𝐵) ≤ 0))
2116, 20mpbird 167 . . . . 5 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴)
2221ex 115 . . . 4 (𝐴 = 0 → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴))
238, 22jaoi 717 . . 3 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴))
241, 23sylbi 121 . 2 (𝐴 ∈ ℕ0 → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴))
2524imp 124 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164   class class class wbr 4030  (class class class)co 5919  cc 7872  0cc0 7874  1c1 7875  cle 8057   # cap 8602   / cdiv 8693  cn 8984  0cn0 9243  +crp 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-n0 9244  df-rp 9723
This theorem is referenced by:  2lgslem1c  15247
  Copyright terms: Public domain W3C validator