| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ledivnn | GIF version | ||
| Description: Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021.) |
| Ref | Expression |
|---|---|
| nn0ledivnn | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9367 | . . 3 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
| 2 | nnge1 9129 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 1 ≤ 𝐵) | |
| 3 | 2 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 1 ≤ 𝐵) |
| 4 | nnrp 9855 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+) | |
| 5 | nnledivrp 9958 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴)) | |
| 6 | 4, 5 | sylan2 286 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴)) |
| 7 | 3, 6 | mpbid 147 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
| 8 | 7 | ex 115 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
| 9 | nncn 9114 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℂ) | |
| 10 | nnap0 9135 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℕ → 𝐵 # 0) | |
| 11 | 9, 10 | jca 306 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 # 0)) |
| 12 | 11 | adantl 277 | . . . . . . . 8 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 # 0)) |
| 13 | div0ap 8845 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → (0 / 𝐵) = 0) | |
| 14 | 12, 13 | syl 14 | . . . . . . 7 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (0 / 𝐵) = 0) |
| 15 | 0le0 9195 | . . . . . . 7 ⊢ 0 ≤ 0 | |
| 16 | 14, 15 | eqbrtrdi 4121 | . . . . . 6 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (0 / 𝐵) ≤ 0) |
| 17 | oveq1 6007 | . . . . . . . 8 ⊢ (𝐴 = 0 → (𝐴 / 𝐵) = (0 / 𝐵)) | |
| 18 | id 19 | . . . . . . . 8 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
| 19 | 17, 18 | breq12d 4095 | . . . . . . 7 ⊢ (𝐴 = 0 → ((𝐴 / 𝐵) ≤ 𝐴 ↔ (0 / 𝐵) ≤ 0)) |
| 20 | 19 | adantr 276 | . . . . . 6 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ≤ 𝐴 ↔ (0 / 𝐵) ≤ 0)) |
| 21 | 16, 20 | mpbird 167 | . . . . 5 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
| 22 | 21 | ex 115 | . . . 4 ⊢ (𝐴 = 0 → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
| 23 | 8, 22 | jaoi 721 | . . 3 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
| 24 | 1, 23 | sylbi 121 | . 2 ⊢ (𝐴 ∈ ℕ0 → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
| 25 | 24 | imp 124 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 ℂcc 7993 0cc0 7995 1c1 7996 ≤ cle 8178 # cap 8724 / cdiv 8815 ℕcn 9106 ℕ0cn0 9365 ℝ+crp 9845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-n0 9366 df-rp 9846 |
| This theorem is referenced by: 2lgslem1c 15763 |
| Copyright terms: Public domain | W3C validator |