Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetresbl GIF version

Theorem xmetresbl 12800
 Description: An extended metric restricted to any ball (in particular the infinity ball) is a proper metric. Together with xmetec 12797, this shows that any extended metric space can be "factored" into the disjoint union of proper metric spaces, with points in the same region measured by that region's metric, and points in different regions being distance +∞ from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypothesis
Ref Expression
xmetresbl.1 𝐵 = (𝑃(ball‘𝐷)𝑅)
Assertion
Ref Expression
xmetresbl ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵))

Proof of Theorem xmetresbl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 982 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐷 ∈ (∞Met‘𝑋))
2 xmetresbl.1 . . . 4 𝐵 = (𝑃(ball‘𝐷)𝑅)
3 blssm 12781 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)
42, 3eqsstrid 3174 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐵𝑋)
5 xmetres2 12739 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
61, 4, 5syl2anc 409 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
7 xmetf 12710 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
81, 7syl 14 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
9 xpss12 4690 . . . . . 6 ((𝐵𝑋𝐵𝑋) → (𝐵 × 𝐵) ⊆ (𝑋 × 𝑋))
104, 4, 9syl2anc 409 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐵 × 𝐵) ⊆ (𝑋 × 𝑋))
118, 10fssresd 5343 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ*)
1211ffnd 5317 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
13 ovres 5954 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) = (𝑥𝐷𝑦))
1413adantl 275 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) = (𝑥𝐷𝑦))
15 simpl1 985 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ (∞Met‘𝑋))
16 eqid 2157 . . . . . . . . . 10 (𝐷 “ ℝ) = (𝐷 “ ℝ)
1716xmeter 12796 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 “ ℝ) Er 𝑋)
1815, 17syl 14 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝐷 “ ℝ) Er 𝑋)
1916blssec 12798 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
202, 19eqsstrid 3174 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐵 ⊆ [𝑃](𝐷 “ ℝ))
2120sselda 3128 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑥𝐵) → 𝑥 ∈ [𝑃](𝐷 “ ℝ))
2221adantrr 471 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ [𝑃](𝐷 “ ℝ))
23 simpl2 986 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃𝑋)
24 elecg 6511 . . . . . . . . . 10 ((𝑥 ∈ [𝑃](𝐷 “ ℝ) ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
2522, 23, 24syl2anc 409 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
2622, 25mpbid 146 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃(𝐷 “ ℝ)𝑥)
2720sselda 3128 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦𝐵) → 𝑦 ∈ [𝑃](𝐷 “ ℝ))
2827adantrl 470 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ [𝑃](𝐷 “ ℝ))
29 elecg 6511 . . . . . . . . . 10 ((𝑦 ∈ [𝑃](𝐷 “ ℝ) ∧ 𝑃𝑋) → (𝑦 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑦))
3028, 23, 29syl2anc 409 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑦))
3128, 30mpbid 146 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃(𝐷 “ ℝ)𝑦)
3218, 26, 31ertr3d 6491 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥(𝐷 “ ℝ)𝑦)
3316xmeterval 12795 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝑥(𝐷 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ)))
3415, 33syl 14 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝐷 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ)))
3532, 34mpbid 146 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ))
3635simp3d 996 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐷𝑦) ∈ ℝ)
3714, 36eqeltrd 2234 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) ∈ ℝ)
3837ralrimivva 2539 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ∀𝑥𝐵𝑦𝐵 (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) ∈ ℝ)
39 ffnov 5919 . . 3 ((𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ ↔ ((𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) ∈ ℝ))
4012, 38, 39sylanbrc 414 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ)
41 ismet2 12714 . 2 ((𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵) ↔ ((𝐷 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵) ∧ (𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ))
426, 40, 41sylanbrc 414 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1335   ∈ wcel 2128  ∀wral 2435   ⊆ wss 3102   class class class wbr 3965   × cxp 4581  ◡ccnv 4582   ↾ cres 4585   “ cima 4586   Fn wfn 5162  ⟶wf 5163  ‘cfv 5167  (class class class)co 5818   Er wer 6470  [cec 6471  ℝcr 7714  ℝ*cxr 7894  ∞Metcxmet 12340  Metcmet 12341  ballcbl 12342 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-po 4255  df-iso 4256  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-er 6473  df-ec 6475  df-map 6588  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-2 8875  df-xneg 9661  df-xadd 9662  df-psmet 12347  df-xmet 12348  df-met 12349  df-bl 12350 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator