ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnssresd GIF version

Theorem fnssresd 5437
Description: Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
fnssresd.1 (𝜑𝐹 Fn 𝐴)
fnssresd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
fnssresd (𝜑 → (𝐹𝐵) Fn 𝐵)

Proof of Theorem fnssresd
StepHypRef Expression
1 fnssresd.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnssresd.2 . 2 (𝜑𝐵𝐴)
3 fnssres 5436 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
41, 2, 3syl2anc 411 1 (𝜑 → (𝐹𝐵) Fn 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3197  cres 4721   Fn wfn 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-fun 5320  df-fn 5321
This theorem is referenced by:  pfxccat1  11234
  Copyright terms: Public domain W3C validator