| Step | Hyp | Ref
| Expression |
| 1 | | ccatcl 11052 |
. . 3
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵) |
| 2 | | lencl 11000 |
. . . . . 6
⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈
ℕ0) |
| 3 | | lencl 11000 |
. . . . . 6
⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈
ℕ0) |
| 4 | 2, 3 | anim12i 338 |
. . . . 5
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((♯‘𝑆) ∈ ℕ0 ∧
(♯‘𝑇) ∈
ℕ0)) |
| 5 | | nn0fz0 10243 |
. . . . . . 7
⊢
((♯‘𝑆)
∈ ℕ0 ↔ (♯‘𝑆) ∈ (0...(♯‘𝑆))) |
| 6 | 2, 5 | sylib 122 |
. . . . . 6
⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (0...(♯‘𝑆))) |
| 7 | 6 | adantr 276 |
. . . . 5
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...(♯‘𝑆))) |
| 8 | | elfz0add 10244 |
. . . . 5
⊢
(((♯‘𝑆)
∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) →
((♯‘𝑆) ∈
(0...(♯‘𝑆))
→ (♯‘𝑆)
∈ (0...((♯‘𝑆) + (♯‘𝑇))))) |
| 9 | 4, 7, 8 | sylc 62 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇)))) |
| 10 | | ccatlen 11054 |
. . . . 5
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇))) |
| 11 | 10 | oveq2d 5962 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (0...(♯‘(𝑆 ++ 𝑇))) = (0...((♯‘𝑆) + (♯‘𝑇)))) |
| 12 | 9, 11 | eleqtrrd 2285 |
. . 3
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) |
| 13 | | pfxres 11135 |
. . 3
⊢ (((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))) |
| 14 | 1, 12, 13 | syl2anc 411 |
. 2
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))) |
| 15 | | ccatvalfn 11060 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇)))) |
| 16 | 2 | nn0zd 9495 |
. . . . . . 7
⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ) |
| 17 | 16 | uzidd 9665 |
. . . . . 6
⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈
(ℤ≥‘(♯‘𝑆))) |
| 18 | | uzaddcl 9709 |
. . . . . 6
⊢
(((♯‘𝑆)
∈ (ℤ≥‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) →
((♯‘𝑆) +
(♯‘𝑇)) ∈
(ℤ≥‘(♯‘𝑆))) |
| 19 | 17, 3, 18 | syl2an 289 |
. . . . 5
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈
(ℤ≥‘(♯‘𝑆))) |
| 20 | | fzoss2 10298 |
. . . . 5
⊢
(((♯‘𝑆)
+ (♯‘𝑇)) ∈
(ℤ≥‘(♯‘𝑆)) → (0..^(♯‘𝑆)) ⊆
(0..^((♯‘𝑆) +
(♯‘𝑇)))) |
| 21 | 19, 20 | syl 14 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (0..^(♯‘𝑆)) ⊆
(0..^((♯‘𝑆) +
(♯‘𝑇)))) |
| 22 | 15, 21 | fnssresd 5391 |
. . 3
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆))) Fn (0..^(♯‘𝑆))) |
| 23 | | wrdfn 11011 |
. . . 4
⊢ (𝑆 ∈ Word 𝐵 → 𝑆 Fn (0..^(♯‘𝑆))) |
| 24 | 23 | adantr 276 |
. . 3
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → 𝑆 Fn (0..^(♯‘𝑆))) |
| 25 | | fvres 5602 |
. . . . 5
⊢ (𝑘 ∈
(0..^(♯‘𝑆))
→ (((𝑆 ++ 𝑇) ↾
(0..^(♯‘𝑆)))‘𝑘) = ((𝑆 ++ 𝑇)‘𝑘)) |
| 26 | 25 | adantl 277 |
. . . 4
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → (((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))‘𝑘) = ((𝑆 ++ 𝑇)‘𝑘)) |
| 27 | | ccatval1 11056 |
. . . . 5
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑘) = (𝑆‘𝑘)) |
| 28 | 27 | 3expa 1206 |
. . . 4
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑘) = (𝑆‘𝑘)) |
| 29 | 26, 28 | eqtrd 2238 |
. . 3
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → (((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))‘𝑘) = (𝑆‘𝑘)) |
| 30 | 22, 24, 29 | eqfnfvd 5682 |
. 2
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆))) = 𝑆) |
| 31 | 14, 30 | eqtrd 2238 |
1
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = 𝑆) |