![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnssres | GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fnssres | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssresb 5366 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) | |
2 | 1 | biimpar 297 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3153 ↾ cres 4661 Fn wfn 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-res 4671 df-fun 5256 df-fn 5257 |
This theorem is referenced by: fnresin1 5368 fnresin2 5369 fssres 5429 fvreseq 5661 fnreseql 5668 ffvresb 5721 fnressn 5744 ofres 6145 tfrlem1 6361 frecrdg 6461 resixp 6787 resfnfinfinss 6998 suplocexprlemell 7773 seq3feq2 10547 seqf1oglem2 10591 reeff1 11843 rngmgpf 13433 mgpf 13507 upxp 14440 uptx 14442 cnmpt1st 14456 cnmpt2nd 14457 ioocosf1o 14989 |
Copyright terms: Public domain | W3C validator |