ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnssres GIF version

Theorem fnssres 5397
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
fnssres ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)

Proof of Theorem fnssres
StepHypRef Expression
1 fnssresb 5396 . 2 (𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))
21biimpar 297 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wss 3170  cres 4684   Fn wfn 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-br 4051  df-opab 4113  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-res 4694  df-fun 5281  df-fn 5282
This theorem is referenced by:  fnssresd  5398  fnresin1  5399  fnresin2  5400  fssres  5462  fvreseq  5695  fnreseql  5702  ffvresb  5755  fnressn  5782  ofres  6185  tfrlem1  6406  frecrdg  6506  resixp  6832  resfnfinfinss  7055  suplocexprlemell  7841  seq3feq2  10638  seqf1oglem2  10682  reeff1  12081  rngmgpf  13769  mgpf  13843  upxp  14814  uptx  14816  cnmpt1st  14830  cnmpt2nd  14831  ioocosf1o  15396  mpodvdsmulf1o  15532
  Copyright terms: Public domain W3C validator