ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnssres GIF version

Theorem fnssres 5436
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
fnssres ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)

Proof of Theorem fnssres
StepHypRef Expression
1 fnssresb 5435 . 2 (𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))
21biimpar 297 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wss 3197  cres 4721   Fn wfn 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-fun 5320  df-fn 5321
This theorem is referenced by:  fnssresd  5437  fnresin1  5438  fnresin2  5439  fssres  5503  fvreseq  5740  fnreseql  5747  ffvresb  5800  fnressn  5829  ofres  6239  tfrlem1  6460  frecrdg  6560  resixp  6888  resfnfinfinss  7114  suplocexprlemell  7908  seq3feq2  10706  seqf1oglem2  10750  reeff1  12219  rngmgpf  13908  mgpf  13982  upxp  14954  uptx  14956  cnmpt1st  14970  cnmpt2nd  14971  ioocosf1o  15536  mpodvdsmulf1o  15672
  Copyright terms: Public domain W3C validator