| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnssres | GIF version | ||
| Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnssres | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssresb 5435 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) | |
| 2 | 1 | biimpar 297 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3197 ↾ cres 4721 Fn wfn 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-res 4731 df-fun 5320 df-fn 5321 |
| This theorem is referenced by: fnssresd 5437 fnresin1 5438 fnresin2 5439 fssres 5503 fvreseq 5740 fnreseql 5747 ffvresb 5800 fnressn 5829 ofres 6239 tfrlem1 6460 frecrdg 6560 resixp 6888 resfnfinfinss 7114 suplocexprlemell 7908 seq3feq2 10706 seqf1oglem2 10750 reeff1 12219 rngmgpf 13908 mgpf 13982 upxp 14954 uptx 14956 cnmpt1st 14970 cnmpt2nd 14971 ioocosf1o 15536 mpodvdsmulf1o 15672 |
| Copyright terms: Public domain | W3C validator |