ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvfo GIF version

Theorem cbvfo 5882
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
cbvfo.1 ((𝐹𝑥) = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvfo (𝐹:𝐴onto𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐵 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐹,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐵(𝑥)

Proof of Theorem cbvfo
StepHypRef Expression
1 fofn 5526 . . 3 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
2 cbvfo.1 . . . . . 6 ((𝐹𝑥) = 𝑦 → (𝜑𝜓))
32bicomd 141 . . . . 5 ((𝐹𝑥) = 𝑦 → (𝜓𝜑))
43eqcoms 2212 . . . 4 (𝑦 = (𝐹𝑥) → (𝜓𝜑))
54ralrn 5746 . . 3 (𝐹 Fn 𝐴 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜑))
61, 5syl 14 . 2 (𝐹:𝐴onto𝐵 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜑))
7 forn 5527 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
87raleqdv 2714 . 2 (𝐹:𝐴onto𝐵 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑦𝐵 𝜓))
96, 8bitr3d 190 1 (𝐹:𝐴onto𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1375  wral 2488  ran crn 4697   Fn wfn 5289  ontowfo 5292  cfv 5294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fo 5300  df-fv 5302
This theorem is referenced by:  cocan2  5885  supisolem  7143
  Copyright terms: Public domain W3C validator