![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvfo | GIF version |
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
cbvfo.1 | ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvfo | ⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofn 5442 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | cbvfo.1 | . . . . . 6 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | bicomd 141 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜓 ↔ 𝜑)) |
4 | 3 | eqcoms 2180 | . . . 4 ⊢ (𝑦 = (𝐹‘𝑥) → (𝜓 ↔ 𝜑)) |
5 | 4 | ralrn 5656 | . . 3 ⊢ (𝐹 Fn 𝐴 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
6 | 1, 5 | syl 14 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
7 | forn 5443 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
8 | 7 | raleqdv 2679 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
9 | 6, 8 | bitr3d 190 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∀wral 2455 ran crn 4629 Fn wfn 5213 –onto→wfo 5216 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fo 5224 df-fv 5226 |
This theorem is referenced by: cocan2 5791 supisolem 7009 |
Copyright terms: Public domain | W3C validator |