ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulc1cncf GIF version

Theorem mulc1cncf 13647
Description: Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
mulc1cncf.1 𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))
Assertion
Ref Expression
mulc1cncf (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem mulc1cncf
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 7913 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
2 mulc1cncf.1 . . 3 𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))
31, 2fmptd 5662 . 2 (𝐴 ∈ ℂ → 𝐹:ℂ⟶ℂ)
4 simprr 531 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
5 simpl 109 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ ℂ)
6 simprl 529 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → 𝑦 ∈ ℂ)
7 mulcn2 11288 . . . . 5 ((𝑧 ∈ ℝ+𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ∃𝑡 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
84, 5, 6, 7syl3anc 1238 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → ∃𝑡 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
9 fvoveq1 5888 . . . . . . . . . . . . . 14 (𝑣 = 𝐴 → (abs‘(𝑣𝐴)) = (abs‘(𝐴𝐴)))
109breq1d 4008 . . . . . . . . . . . . 13 (𝑣 = 𝐴 → ((abs‘(𝑣𝐴)) < 𝑡 ↔ (abs‘(𝐴𝐴)) < 𝑡))
1110anbi1d 465 . . . . . . . . . . . 12 (𝑣 = 𝐴 → (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) ↔ ((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤)))
12 oveq1 5872 . . . . . . . . . . . . . 14 (𝑣 = 𝐴 → (𝑣 · 𝑢) = (𝐴 · 𝑢))
1312fvoveq1d 5887 . . . . . . . . . . . . 13 (𝑣 = 𝐴 → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) = (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))))
1413breq1d 4008 . . . . . . . . . . . 12 (𝑣 = 𝐴 → ((abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧 ↔ (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
1511, 14imbi12d 234 . . . . . . . . . . 11 (𝑣 = 𝐴 → ((((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) ↔ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
1615ralbidv 2475 . . . . . . . . . 10 (𝑣 = 𝐴 → (∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) ↔ ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
1716rspcv 2835 . . . . . . . . 9 (𝐴 ∈ ℂ → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
1817ad2antrr 488 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
19 subid 8150 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (𝐴𝐴) = 0)
2019ad2antrr 488 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐴𝐴) = 0)
2120abs00bd 11043 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (abs‘(𝐴𝐴)) = 0)
22 simprll 537 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝑡 ∈ ℝ+)
2322rpgt0d 9670 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 0 < 𝑡)
2421, 23eqbrtrd 4020 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (abs‘(𝐴𝐴)) < 𝑡)
2524biantrurd 305 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → ((abs‘(𝑢𝑦)) < 𝑤 ↔ ((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤)))
26 simprr 531 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝑢 ∈ ℂ)
27 simpll 527 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝐴 ∈ ℂ)
2827, 26mulcld 7952 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐴 · 𝑢) ∈ ℂ)
29 oveq2 5873 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢))
3029, 2fvmptg 5584 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℂ ∧ (𝐴 · 𝑢) ∈ ℂ) → (𝐹𝑢) = (𝐴 · 𝑢))
3126, 28, 30syl2anc 411 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐹𝑢) = (𝐴 · 𝑢))
32 simplrl 535 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝑦 ∈ ℂ)
3327, 32mulcld 7952 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐴 · 𝑦) ∈ ℂ)
34 oveq2 5873 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
3534, 2fvmptg 5584 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ (𝐴 · 𝑦) ∈ ℂ) → (𝐹𝑦) = (𝐴 · 𝑦))
3632, 33, 35syl2anc 411 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐹𝑦) = (𝐴 · 𝑦))
3731, 36oveq12d 5883 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → ((𝐹𝑢) − (𝐹𝑦)) = ((𝐴 · 𝑢) − (𝐴 · 𝑦)))
3837fveq2d 5511 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (abs‘((𝐹𝑢) − (𝐹𝑦))) = (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))))
3938breq1d 4008 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → ((abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧 ↔ (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
4025, 39imbi12d 234 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧) ↔ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
4140anassrs 400 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) ∧ 𝑢 ∈ ℂ) → (((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧) ↔ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
4241ralbidva 2471 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) → (∀𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧) ↔ ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
4318, 42sylibrd 169 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
4443anassrs 400 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑡 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
4544reximdva 2577 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑡 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
4645rexlimdva 2592 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → (∃𝑡 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
478, 46mpd 13 . . 3 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧))
4847ralrimivva 2557 . 2 (𝐴 ∈ ℂ → ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧))
49 ssid 3173 . . 3 ℂ ⊆ ℂ
50 elcncf2 13632 . . 3 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐹 ∈ (ℂ–cn→ℂ) ↔ (𝐹:ℂ⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧))))
5149, 49, 50mp2an 426 . 2 (𝐹 ∈ (ℂ–cn→ℂ) ↔ (𝐹:ℂ⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
523, 48, 51sylanbrc 417 1 (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  wral 2453  wrex 2454  wss 3127   class class class wbr 3998  cmpt 4059  wf 5204  cfv 5208  (class class class)co 5865  cc 7784  0cc0 7786   · cmul 7791   < clt 7966  cmin 8102  +crp 9624  abscabs 10974  cnccncf 13628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-map 6640  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-n0 9150  df-z 9227  df-uz 9502  df-rp 9625  df-seqfrec 10416  df-exp 10490  df-cj 10819  df-re 10820  df-im 10821  df-rsqrt 10975  df-abs 10976  df-cncf 13629
This theorem is referenced by:  divccncfap  13648  cdivcncfap  13658  sincn  13761  coscn  13762
  Copyright terms: Public domain W3C validator