ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulc1cncf GIF version

Theorem mulc1cncf 13743
Description: Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
mulc1cncf.1 𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))
Assertion
Ref Expression
mulc1cncf (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem mulc1cncf
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 7929 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
2 mulc1cncf.1 . . 3 𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))
31, 2fmptd 5666 . 2 (𝐴 ∈ ℂ → 𝐹:ℂ⟶ℂ)
4 simprr 531 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
5 simpl 109 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ ℂ)
6 simprl 529 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → 𝑦 ∈ ℂ)
7 mulcn2 11304 . . . . 5 ((𝑧 ∈ ℝ+𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ∃𝑡 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
84, 5, 6, 7syl3anc 1238 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → ∃𝑡 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
9 fvoveq1 5892 . . . . . . . . . . . . . 14 (𝑣 = 𝐴 → (abs‘(𝑣𝐴)) = (abs‘(𝐴𝐴)))
109breq1d 4010 . . . . . . . . . . . . 13 (𝑣 = 𝐴 → ((abs‘(𝑣𝐴)) < 𝑡 ↔ (abs‘(𝐴𝐴)) < 𝑡))
1110anbi1d 465 . . . . . . . . . . . 12 (𝑣 = 𝐴 → (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) ↔ ((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤)))
12 oveq1 5876 . . . . . . . . . . . . . 14 (𝑣 = 𝐴 → (𝑣 · 𝑢) = (𝐴 · 𝑢))
1312fvoveq1d 5891 . . . . . . . . . . . . 13 (𝑣 = 𝐴 → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) = (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))))
1413breq1d 4010 . . . . . . . . . . . 12 (𝑣 = 𝐴 → ((abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧 ↔ (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
1511, 14imbi12d 234 . . . . . . . . . . 11 (𝑣 = 𝐴 → ((((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) ↔ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
1615ralbidv 2477 . . . . . . . . . 10 (𝑣 = 𝐴 → (∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) ↔ ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
1716rspcv 2837 . . . . . . . . 9 (𝐴 ∈ ℂ → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
1817ad2antrr 488 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
19 subid 8166 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (𝐴𝐴) = 0)
2019ad2antrr 488 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐴𝐴) = 0)
2120abs00bd 11059 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (abs‘(𝐴𝐴)) = 0)
22 simprll 537 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝑡 ∈ ℝ+)
2322rpgt0d 9686 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 0 < 𝑡)
2421, 23eqbrtrd 4022 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (abs‘(𝐴𝐴)) < 𝑡)
2524biantrurd 305 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → ((abs‘(𝑢𝑦)) < 𝑤 ↔ ((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤)))
26 simprr 531 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝑢 ∈ ℂ)
27 simpll 527 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝐴 ∈ ℂ)
2827, 26mulcld 7968 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐴 · 𝑢) ∈ ℂ)
29 oveq2 5877 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢))
3029, 2fvmptg 5588 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℂ ∧ (𝐴 · 𝑢) ∈ ℂ) → (𝐹𝑢) = (𝐴 · 𝑢))
3126, 28, 30syl2anc 411 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐹𝑢) = (𝐴 · 𝑢))
32 simplrl 535 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝑦 ∈ ℂ)
3327, 32mulcld 7968 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐴 · 𝑦) ∈ ℂ)
34 oveq2 5877 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
3534, 2fvmptg 5588 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ (𝐴 · 𝑦) ∈ ℂ) → (𝐹𝑦) = (𝐴 · 𝑦))
3632, 33, 35syl2anc 411 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐹𝑦) = (𝐴 · 𝑦))
3731, 36oveq12d 5887 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → ((𝐹𝑢) − (𝐹𝑦)) = ((𝐴 · 𝑢) − (𝐴 · 𝑦)))
3837fveq2d 5515 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (abs‘((𝐹𝑢) − (𝐹𝑦))) = (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))))
3938breq1d 4010 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → ((abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧 ↔ (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
4025, 39imbi12d 234 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧) ↔ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
4140anassrs 400 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) ∧ 𝑢 ∈ ℂ) → (((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧) ↔ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
4241ralbidva 2473 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) → (∀𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧) ↔ ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
4318, 42sylibrd 169 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
4443anassrs 400 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑡 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
4544reximdva 2579 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑡 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
4645rexlimdva 2594 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → (∃𝑡 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
478, 46mpd 13 . . 3 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧))
4847ralrimivva 2559 . 2 (𝐴 ∈ ℂ → ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧))
49 ssid 3175 . . 3 ℂ ⊆ ℂ
50 elcncf2 13728 . . 3 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐹 ∈ (ℂ–cn→ℂ) ↔ (𝐹:ℂ⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧))))
5149, 49, 50mp2an 426 . 2 (𝐹 ∈ (ℂ–cn→ℂ) ↔ (𝐹:ℂ⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
523, 48, 51sylanbrc 417 1 (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  wrex 2456  wss 3129   class class class wbr 4000  cmpt 4061  wf 5208  cfv 5212  (class class class)co 5869  cc 7800  0cc0 7802   · cmul 7807   < clt 7982  cmin 8118  +crp 9640  abscabs 10990  cnccncf 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-map 6644  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-cncf 13725
This theorem is referenced by:  divccncfap  13744  cdivcncfap  13754  sincn  13857  coscn  13858
  Copyright terms: Public domain W3C validator