ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulc1cncf GIF version

Theorem mulc1cncf 14909
Description: Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
mulc1cncf.1 𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))
Assertion
Ref Expression
mulc1cncf (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem mulc1cncf
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 8023 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
2 mulc1cncf.1 . . 3 𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))
31, 2fmptd 5719 . 2 (𝐴 ∈ ℂ → 𝐹:ℂ⟶ℂ)
4 simprr 531 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
5 simpl 109 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ ℂ)
6 simprl 529 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → 𝑦 ∈ ℂ)
7 mulcn2 11494 . . . . 5 ((𝑧 ∈ ℝ+𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ∃𝑡 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
84, 5, 6, 7syl3anc 1249 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → ∃𝑡 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
9 fvoveq1 5948 . . . . . . . . . . . . . 14 (𝑣 = 𝐴 → (abs‘(𝑣𝐴)) = (abs‘(𝐴𝐴)))
109breq1d 4044 . . . . . . . . . . . . 13 (𝑣 = 𝐴 → ((abs‘(𝑣𝐴)) < 𝑡 ↔ (abs‘(𝐴𝐴)) < 𝑡))
1110anbi1d 465 . . . . . . . . . . . 12 (𝑣 = 𝐴 → (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) ↔ ((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤)))
12 oveq1 5932 . . . . . . . . . . . . . 14 (𝑣 = 𝐴 → (𝑣 · 𝑢) = (𝐴 · 𝑢))
1312fvoveq1d 5947 . . . . . . . . . . . . 13 (𝑣 = 𝐴 → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) = (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))))
1413breq1d 4044 . . . . . . . . . . . 12 (𝑣 = 𝐴 → ((abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧 ↔ (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
1511, 14imbi12d 234 . . . . . . . . . . 11 (𝑣 = 𝐴 → ((((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) ↔ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
1615ralbidv 2497 . . . . . . . . . 10 (𝑣 = 𝐴 → (∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) ↔ ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
1716rspcv 2864 . . . . . . . . 9 (𝐴 ∈ ℂ → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
1817ad2antrr 488 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
19 subid 8262 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (𝐴𝐴) = 0)
2019ad2antrr 488 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐴𝐴) = 0)
2120abs00bd 11248 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (abs‘(𝐴𝐴)) = 0)
22 simprll 537 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝑡 ∈ ℝ+)
2322rpgt0d 9791 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 0 < 𝑡)
2421, 23eqbrtrd 4056 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (abs‘(𝐴𝐴)) < 𝑡)
2524biantrurd 305 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → ((abs‘(𝑢𝑦)) < 𝑤 ↔ ((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤)))
26 simprr 531 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝑢 ∈ ℂ)
27 simpll 527 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝐴 ∈ ℂ)
2827, 26mulcld 8064 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐴 · 𝑢) ∈ ℂ)
29 oveq2 5933 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢))
3029, 2fvmptg 5640 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℂ ∧ (𝐴 · 𝑢) ∈ ℂ) → (𝐹𝑢) = (𝐴 · 𝑢))
3126, 28, 30syl2anc 411 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐹𝑢) = (𝐴 · 𝑢))
32 simplrl 535 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → 𝑦 ∈ ℂ)
3327, 32mulcld 8064 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐴 · 𝑦) ∈ ℂ)
34 oveq2 5933 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
3534, 2fvmptg 5640 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ (𝐴 · 𝑦) ∈ ℂ) → (𝐹𝑦) = (𝐴 · 𝑦))
3632, 33, 35syl2anc 411 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (𝐹𝑦) = (𝐴 · 𝑦))
3731, 36oveq12d 5943 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → ((𝐹𝑢) − (𝐹𝑦)) = ((𝐴 · 𝑢) − (𝐴 · 𝑦)))
3837fveq2d 5565 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (abs‘((𝐹𝑢) − (𝐹𝑦))) = (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))))
3938breq1d 4044 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → ((abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧 ↔ (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧))
4025, 39imbi12d 234 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ ((𝑡 ∈ ℝ+𝑤 ∈ ℝ+) ∧ 𝑢 ∈ ℂ)) → (((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧) ↔ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
4140anassrs 400 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) ∧ 𝑢 ∈ ℂ) → (((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧) ↔ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
4241ralbidva 2493 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) → (∀𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧) ↔ ∀𝑢 ∈ ℂ (((abs‘(𝐴𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝐴 · 𝑢) − (𝐴 · 𝑦))) < 𝑧)))
4318, 42sylibrd 169 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ (𝑡 ∈ ℝ+𝑤 ∈ ℝ+)) → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
4443anassrs 400 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑡 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∀𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
4544reximdva 2599 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑡 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
4645rexlimdva 2614 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → (∃𝑡 ∈ ℝ+𝑤 ∈ ℝ+𝑣 ∈ ℂ ∀𝑢 ∈ ℂ (((abs‘(𝑣𝐴)) < 𝑡 ∧ (abs‘(𝑢𝑦)) < 𝑤) → (abs‘((𝑣 · 𝑢) − (𝐴 · 𝑦))) < 𝑧) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
478, 46mpd 13 . . 3 ((𝐴 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℝ+)) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧))
4847ralrimivva 2579 . 2 (𝐴 ∈ ℂ → ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧))
49 ssid 3204 . . 3 ℂ ⊆ ℂ
50 elcncf2 14894 . . 3 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐹 ∈ (ℂ–cn→ℂ) ↔ (𝐹:ℂ⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧))))
5149, 49, 50mp2an 426 . 2 (𝐹 ∈ (ℂ–cn→ℂ) ↔ (𝐹:ℂ⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢𝑦)) < 𝑤 → (abs‘((𝐹𝑢) − (𝐹𝑦))) < 𝑧)))
523, 48, 51sylanbrc 417 1 (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476  wss 3157   class class class wbr 4034  cmpt 4095  wf 5255  cfv 5259  (class class class)co 5925  cc 7894  0cc0 7896   · cmul 7901   < clt 8078  cmin 8214  +crp 9745  abscabs 11179  cnccncf 14890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-cncf 14891
This theorem is referenced by:  divccncfap  14910  cdivcncfap  14924  sincn  15089  coscn  15090
  Copyright terms: Public domain W3C validator