ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relogef GIF version

Theorem relogef 13836
Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
Assertion
Ref Expression
relogef (𝐴 ∈ ℝ → (log‘(exp‘𝐴)) = 𝐴)

Proof of Theorem relogef
StepHypRef Expression
1 rpefcl 11659 . . . 4 (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ+)
2 reeflog 13835 . . . 4 ((exp‘𝐴) ∈ ℝ+ → (exp‘(log‘(exp‘𝐴))) = (exp‘𝐴))
31, 2syl 14 . . 3 (𝐴 ∈ ℝ → (exp‘(log‘(exp‘𝐴))) = (exp‘𝐴))
4 relogcl 13834 . . . . 5 ((exp‘𝐴) ∈ ℝ+ → (log‘(exp‘𝐴)) ∈ ℝ)
51, 4syl 14 . . . 4 (𝐴 ∈ ℝ → (log‘(exp‘𝐴)) ∈ ℝ)
65fvresd 5532 . . 3 (𝐴 ∈ ℝ → ((exp ↾ ℝ)‘(log‘(exp‘𝐴))) = (exp‘(log‘(exp‘𝐴))))
7 fvres 5531 . . 3 (𝐴 ∈ ℝ → ((exp ↾ ℝ)‘𝐴) = (exp‘𝐴))
83, 6, 73eqtr4d 2218 . 2 (𝐴 ∈ ℝ → ((exp ↾ ℝ)‘(log‘(exp‘𝐴))) = ((exp ↾ ℝ)‘𝐴))
9 reeff1 11674 . . . 4 (exp ↾ ℝ):ℝ–1-1→ℝ+
10 f1fveq 5763 . . . 4 (((exp ↾ ℝ):ℝ–1-1→ℝ+ ∧ ((log‘(exp‘𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ)) → (((exp ↾ ℝ)‘(log‘(exp‘𝐴))) = ((exp ↾ ℝ)‘𝐴) ↔ (log‘(exp‘𝐴)) = 𝐴))
119, 10mpan 424 . . 3 (((log‘(exp‘𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((exp ↾ ℝ)‘(log‘(exp‘𝐴))) = ((exp ↾ ℝ)‘𝐴) ↔ (log‘(exp‘𝐴)) = 𝐴))
125, 11mpancom 422 . 2 (𝐴 ∈ ℝ → (((exp ↾ ℝ)‘(log‘(exp‘𝐴))) = ((exp ↾ ℝ)‘𝐴) ↔ (log‘(exp‘𝐴)) = 𝐴))
138, 12mpbid 147 1 (𝐴 ∈ ℝ → (log‘(exp‘𝐴)) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  cres 4622  1-1wf1 5205  cfv 5208  cr 7785  +crp 9622  expce 11616  logclog 13828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906  ax-pre-suploc 7907  ax-addf 7908  ax-mulf 7909
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-disj 3976  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-of 6073  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-frec 6382  df-1o 6407  df-oadd 6411  df-er 6525  df-map 6640  df-pm 6641  df-en 6731  df-dom 6732  df-fin 6733  df-sup 6973  df-inf 6974  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-xneg 9741  df-xadd 9742  df-ioo 9861  df-ico 9863  df-icc 9864  df-fz 9978  df-fzo 10111  df-seqfrec 10414  df-exp 10488  df-fac 10672  df-bc 10694  df-ihash 10722  df-shft 10790  df-cj 10817  df-re 10818  df-im 10819  df-rsqrt 10973  df-abs 10974  df-clim 11253  df-sumdc 11328  df-ef 11622  df-e 11623  df-rest 12610  df-topgen 12629  df-psmet 13038  df-xmet 13039  df-met 13040  df-bl 13041  df-mopn 13042  df-top 13047  df-topon 13060  df-bases 13092  df-ntr 13147  df-cn 13239  df-cnp 13240  df-tx 13304  df-cncf 13609  df-limced 13676  df-dvap 13677  df-relog 13830
This theorem is referenced by:  relogeftb  13837  relogoprlem  13840  relogexp  13844  relogefd  13859
  Copyright terms: Public domain W3C validator