ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzval GIF version

Theorem gsumfzval 13419
Description: An expression for Σg when summing over a finite set of sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.)
Hypotheses
Ref Expression
gsumval.b 𝐵 = (Base‘𝐺)
gsumval.z 0 = (0g𝐺)
gsumval.p + = (+g𝐺)
gsumval.g (𝜑𝐺𝑉)
gsumfzval.m (𝜑𝑀 ∈ ℤ)
gsumfzval.n (𝜑𝑁 ∈ ℤ)
gsumfzval.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumfzval (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))

Proof of Theorem gsumfzval
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval.b . . 3 𝐵 = (Base‘𝐺)
2 gsumval.z . . 3 0 = (0g𝐺)
3 gsumval.p . . 3 + = (+g𝐺)
4 gsumval.g . . 3 (𝜑𝐺𝑉)
5 gsumfzval.m . . . 4 (𝜑𝑀 ∈ ℤ)
6 gsumfzval.n . . . 4 (𝜑𝑁 ∈ ℤ)
75, 6fzfigd 10648 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
8 gsumfzval.f . . 3 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
91, 2, 3, 4, 7, 8igsumval 13418 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
10 fn0g 13403 . . . . . 6 0g Fn V
114elexd 2813 . . . . . 6 (𝜑𝐺 ∈ V)
12 funfvex 5643 . . . . . . 7 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
1312funfni 5422 . . . . . 6 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
1410, 11, 13sylancr 414 . . . . 5 (𝜑 → (0g𝐺) ∈ V)
152, 14eqeltrid 2316 . . . 4 (𝜑0 ∈ V)
16 seqex 10666 . . . . 5 seq𝑀( + , 𝐹) ∈ V
17 fvexg 5645 . . . . 5 ((seq𝑀( + , 𝐹) ∈ V ∧ 𝑁 ∈ ℤ) → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
1816, 6, 17sylancr 414 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
1915, 18ifexd 4574 . . 3 (𝜑 → if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ∈ V)
20 zdclt 9520 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀)
216, 5, 20syl2anc 411 . . . . . . 7 (𝜑DECID 𝑁 < 𝑀)
22 eqifdc 3639 . . . . . . 7 (DECID 𝑁 < 𝑀 → (𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((𝑁 < 𝑀𝑥 = 0 ) ∨ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))))
2321, 22syl 14 . . . . . 6 (𝜑 → (𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((𝑁 < 𝑀𝑥 = 0 ) ∨ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))))
24 fzn 10234 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
255, 6, 24syl2anc 411 . . . . . . . 8 (𝜑 → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
2625anbi1d 465 . . . . . . 7 (𝜑 → ((𝑁 < 𝑀𝑥 = 0 ) ↔ ((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 )))
275adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑀 ∈ ℤ)
2827zred 9565 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑀 ∈ ℝ)
296adantr 276 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑁 ∈ ℤ)
3029zred 9565 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑁 ∈ ℝ)
31 simprl 529 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ¬ 𝑁 < 𝑀)
3228, 30, 31nltled 8263 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑀𝑁)
33 eluz 9731 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
3427, 29, 33syl2anc 411 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
3532, 34mpbird 167 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑁 ∈ (ℤ𝑀))
36 oveq2 6008 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → (𝑀...𝑛) = (𝑀...𝑁))
3736eqeq2d 2241 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → ((𝑀...𝑁) = (𝑀...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑁)))
38 fveq2 5626 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
3938eqeq2d 2241 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
4037, 39anbi12d 473 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
4140adantl 277 . . . . . . . . . . 11 (((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) ∧ 𝑛 = 𝑁) → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
42 eqidd 2230 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → (𝑀...𝑁) = (𝑀...𝑁))
43 simprr 531 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
4442, 43jca 306 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
4535, 41, 44rspcedvd 2913 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
46 fveq2 5626 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
47 oveq1 6007 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (𝑚...𝑛) = (𝑀...𝑛))
4847eqeq2d 2241 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑛)))
49 seqeq1 10667 . . . . . . . . . . . . . . 15 (𝑚 = 𝑀 → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
5049fveq1d 5628 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑛))
5150eqeq2d 2241 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
5248, 51anbi12d 473 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
5346, 52rexeqbidv 2745 . . . . . . . . . . 11 (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
5453spcegv 2891 . . . . . . . . . 10 (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5527, 45, 54sylc 62 . . . . . . . . 9 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
5655ex 115 . . . . . . . 8 (𝜑 → ((¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
57 eluzel2 9723 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑚) → 𝑚 ∈ ℤ)
5857ad2antlr 489 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 ∈ ℤ)
5958zred 9565 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 ∈ ℝ)
60 eluzelre 9728 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → 𝑛 ∈ ℝ)
6160ad2antlr 489 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑛 ∈ ℝ)
62 eluzle 9730 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → 𝑚𝑛)
6362ad2antlr 489 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚𝑛)
6459, 61, 63lensymd 8264 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ¬ 𝑛 < 𝑚)
65 simprl 529 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑀...𝑁) = (𝑚...𝑛))
6665eqcomd 2235 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚...𝑛) = (𝑀...𝑁))
67 fzopth 10253 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
6867ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
6966, 68mpbid 147 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚 = 𝑀𝑛 = 𝑁))
7069simprd 114 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑛 = 𝑁)
7169simpld 112 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 = 𝑀)
7270, 71breq12d 4095 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑛 < 𝑚𝑁 < 𝑀))
7364, 72mtbid 676 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ¬ 𝑁 < 𝑀)
74 simprr 531 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))
7571seqeq1d 10670 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
7675, 70fveq12d 5633 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
7774, 76eqtrd 2262 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
7873, 77jca 306 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
7978rexlimdva2 2651 . . . . . . . . 9 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
8079exlimdv 1865 . . . . . . . 8 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
8156, 80impbid 129 . . . . . . 7 (𝜑 → ((¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
8226, 81orbi12d 798 . . . . . 6 (𝜑 → (((𝑁 < 𝑀𝑥 = 0 ) ∨ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
8323, 82bitr2d 189 . . . . 5 (𝜑 → ((((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ 𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁))))
8483adantr 276 . . . 4 ((𝜑 ∧ if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ∈ V) → ((((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ 𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁))))
8584iota5 5299 . . 3 ((𝜑 ∧ if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ∈ V) → (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))
8619, 85mpdan 421 . 2 (𝜑 → (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))
879, 86eqtrd 2262 1 (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839   = wceq 1395  wex 1538  wcel 2200  wrex 2509  Vcvv 2799  c0 3491  ifcif 3602   class class class wbr 4082  cio 5275   Fn wfn 5312  wf 5313  cfv 5317  (class class class)co 6000  Fincfn 6885  cr 7994   < clt 8177  cle 8178  cz 9442  cuz 9718  ...cfz 10200  seqcseq 10664  Basecbs 13027  +gcplusg 13105  0gc0g 13284   Σg cgsu 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286  df-igsum 13287
This theorem is referenced by:  gsumfzz  13523  gsumfzcl  13527  gsumfzreidx  13869  gsumfzsubmcl  13870  gsumfzmptfidmadd  13871  gsumfzmhm  13875
  Copyright terms: Public domain W3C validator