ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzval GIF version

Theorem gsumfzval 13010
Description: An expression for Σg when summing over a finite set of sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.)
Hypotheses
Ref Expression
gsumval.b 𝐵 = (Base‘𝐺)
gsumval.z 0 = (0g𝐺)
gsumval.p + = (+g𝐺)
gsumval.g (𝜑𝐺𝑉)
gsumfzval.m (𝜑𝑀 ∈ ℤ)
gsumfzval.n (𝜑𝑁 ∈ ℤ)
gsumfzval.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumfzval (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))

Proof of Theorem gsumfzval
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval.b . . 3 𝐵 = (Base‘𝐺)
2 gsumval.z . . 3 0 = (0g𝐺)
3 gsumval.p . . 3 + = (+g𝐺)
4 gsumval.g . . 3 (𝜑𝐺𝑉)
5 gsumfzval.m . . . 4 (𝜑𝑀 ∈ ℤ)
6 gsumfzval.n . . . 4 (𝜑𝑁 ∈ ℤ)
75, 6fzfigd 10508 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
8 gsumfzval.f . . 3 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
91, 2, 3, 4, 7, 8igsumval 13009 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
10 fn0g 12994 . . . . . 6 0g Fn V
114elexd 2776 . . . . . 6 (𝜑𝐺 ∈ V)
12 funfvex 5575 . . . . . . 7 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
1312funfni 5358 . . . . . 6 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
1410, 11, 13sylancr 414 . . . . 5 (𝜑 → (0g𝐺) ∈ V)
152, 14eqeltrid 2283 . . . 4 (𝜑0 ∈ V)
16 seqex 10526 . . . . 5 seq𝑀( + , 𝐹) ∈ V
17 fvexg 5577 . . . . 5 ((seq𝑀( + , 𝐹) ∈ V ∧ 𝑁 ∈ ℤ) → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
1816, 6, 17sylancr 414 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
1915, 18ifexd 4519 . . 3 (𝜑 → if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ∈ V)
20 zdclt 9400 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀)
216, 5, 20syl2anc 411 . . . . . . 7 (𝜑DECID 𝑁 < 𝑀)
22 eqifdc 3596 . . . . . . 7 (DECID 𝑁 < 𝑀 → (𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((𝑁 < 𝑀𝑥 = 0 ) ∨ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))))
2321, 22syl 14 . . . . . 6 (𝜑 → (𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((𝑁 < 𝑀𝑥 = 0 ) ∨ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))))
24 fzn 10114 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
255, 6, 24syl2anc 411 . . . . . . . 8 (𝜑 → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
2625anbi1d 465 . . . . . . 7 (𝜑 → ((𝑁 < 𝑀𝑥 = 0 ) ↔ ((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 )))
275adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑀 ∈ ℤ)
2827zred 9445 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑀 ∈ ℝ)
296adantr 276 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑁 ∈ ℤ)
3029zred 9445 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑁 ∈ ℝ)
31 simprl 529 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ¬ 𝑁 < 𝑀)
3228, 30, 31nltled 8145 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑀𝑁)
33 eluz 9611 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
3427, 29, 33syl2anc 411 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
3532, 34mpbird 167 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑁 ∈ (ℤ𝑀))
36 oveq2 5930 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → (𝑀...𝑛) = (𝑀...𝑁))
3736eqeq2d 2208 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → ((𝑀...𝑁) = (𝑀...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑁)))
38 fveq2 5558 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
3938eqeq2d 2208 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
4037, 39anbi12d 473 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
4140adantl 277 . . . . . . . . . . 11 (((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) ∧ 𝑛 = 𝑁) → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
42 eqidd 2197 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → (𝑀...𝑁) = (𝑀...𝑁))
43 simprr 531 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
4442, 43jca 306 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
4535, 41, 44rspcedvd 2874 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
46 fveq2 5558 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
47 oveq1 5929 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (𝑚...𝑛) = (𝑀...𝑛))
4847eqeq2d 2208 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑛)))
49 seqeq1 10527 . . . . . . . . . . . . . . 15 (𝑚 = 𝑀 → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
5049fveq1d 5560 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑛))
5150eqeq2d 2208 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
5248, 51anbi12d 473 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
5346, 52rexeqbidv 2710 . . . . . . . . . . 11 (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
5453spcegv 2852 . . . . . . . . . 10 (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5527, 45, 54sylc 62 . . . . . . . . 9 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
5655ex 115 . . . . . . . 8 (𝜑 → ((¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
57 eluzel2 9603 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑚) → 𝑚 ∈ ℤ)
5857ad2antlr 489 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 ∈ ℤ)
5958zred 9445 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 ∈ ℝ)
60 eluzelre 9608 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → 𝑛 ∈ ℝ)
6160ad2antlr 489 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑛 ∈ ℝ)
62 eluzle 9610 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → 𝑚𝑛)
6362ad2antlr 489 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚𝑛)
6459, 61, 63lensymd 8146 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ¬ 𝑛 < 𝑚)
65 simprl 529 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑀...𝑁) = (𝑚...𝑛))
6665eqcomd 2202 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚...𝑛) = (𝑀...𝑁))
67 fzopth 10133 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
6867ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
6966, 68mpbid 147 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚 = 𝑀𝑛 = 𝑁))
7069simprd 114 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑛 = 𝑁)
7169simpld 112 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 = 𝑀)
7270, 71breq12d 4046 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑛 < 𝑚𝑁 < 𝑀))
7364, 72mtbid 673 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ¬ 𝑁 < 𝑀)
74 simprr 531 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))
7571seqeq1d 10530 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
7675, 70fveq12d 5565 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
7774, 76eqtrd 2229 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
7873, 77jca 306 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
7978rexlimdva2 2617 . . . . . . . . 9 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
8079exlimdv 1833 . . . . . . . 8 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
8156, 80impbid 129 . . . . . . 7 (𝜑 → ((¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
8226, 81orbi12d 794 . . . . . 6 (𝜑 → (((𝑁 < 𝑀𝑥 = 0 ) ∨ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
8323, 82bitr2d 189 . . . . 5 (𝜑 → ((((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ 𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁))))
8483adantr 276 . . . 4 ((𝜑 ∧ if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ∈ V) → ((((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ 𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁))))
8584iota5 5240 . . 3 ((𝜑 ∧ if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ∈ V) → (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))
8619, 85mpdan 421 . 2 (𝜑 → (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))
879, 86eqtrd 2229 1 (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wex 1506  wcel 2167  wrex 2476  Vcvv 2763  c0 3450  ifcif 3561   class class class wbr 4033  cio 5217   Fn wfn 5253  wf 5254  cfv 5258  (class class class)co 5922  Fincfn 6799  cr 7876   < clt 8059  cle 8060  cz 9323  cuz 9598  ...cfz 10080  seqcseq 10524  Basecbs 12654  +gcplusg 12731  0gc0g 12903   Σg cgsu 12904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-inn 8988  df-n0 9247  df-z 9324  df-uz 9599  df-fz 10081  df-seqfrec 10525  df-ndx 12657  df-slot 12658  df-base 12660  df-0g 12905  df-igsum 12906
This theorem is referenced by:  gsumfzz  13103  gsumfzcl  13107  gsumfzreidx  13443  gsumfzsubmcl  13444  gsumfzmptfidmadd  13445  gsumfzmhm  13449
  Copyright terms: Public domain W3C validator