ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzval GIF version

Theorem gsumfzval 13044
Description: An expression for Σg when summing over a finite set of sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.)
Hypotheses
Ref Expression
gsumval.b 𝐵 = (Base‘𝐺)
gsumval.z 0 = (0g𝐺)
gsumval.p + = (+g𝐺)
gsumval.g (𝜑𝐺𝑉)
gsumfzval.m (𝜑𝑀 ∈ ℤ)
gsumfzval.n (𝜑𝑁 ∈ ℤ)
gsumfzval.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumfzval (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))

Proof of Theorem gsumfzval
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval.b . . 3 𝐵 = (Base‘𝐺)
2 gsumval.z . . 3 0 = (0g𝐺)
3 gsumval.p . . 3 + = (+g𝐺)
4 gsumval.g . . 3 (𝜑𝐺𝑉)
5 gsumfzval.m . . . 4 (𝜑𝑀 ∈ ℤ)
6 gsumfzval.n . . . 4 (𝜑𝑁 ∈ ℤ)
75, 6fzfigd 10525 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
8 gsumfzval.f . . 3 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
91, 2, 3, 4, 7, 8igsumval 13043 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
10 fn0g 13028 . . . . . 6 0g Fn V
114elexd 2776 . . . . . 6 (𝜑𝐺 ∈ V)
12 funfvex 5576 . . . . . . 7 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
1312funfni 5359 . . . . . 6 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
1410, 11, 13sylancr 414 . . . . 5 (𝜑 → (0g𝐺) ∈ V)
152, 14eqeltrid 2283 . . . 4 (𝜑0 ∈ V)
16 seqex 10543 . . . . 5 seq𝑀( + , 𝐹) ∈ V
17 fvexg 5578 . . . . 5 ((seq𝑀( + , 𝐹) ∈ V ∧ 𝑁 ∈ ℤ) → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
1816, 6, 17sylancr 414 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
1915, 18ifexd 4520 . . 3 (𝜑 → if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ∈ V)
20 zdclt 9405 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀)
216, 5, 20syl2anc 411 . . . . . . 7 (𝜑DECID 𝑁 < 𝑀)
22 eqifdc 3597 . . . . . . 7 (DECID 𝑁 < 𝑀 → (𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((𝑁 < 𝑀𝑥 = 0 ) ∨ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))))
2321, 22syl 14 . . . . . 6 (𝜑 → (𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((𝑁 < 𝑀𝑥 = 0 ) ∨ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))))
24 fzn 10119 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
255, 6, 24syl2anc 411 . . . . . . . 8 (𝜑 → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
2625anbi1d 465 . . . . . . 7 (𝜑 → ((𝑁 < 𝑀𝑥 = 0 ) ↔ ((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 )))
275adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑀 ∈ ℤ)
2827zred 9450 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑀 ∈ ℝ)
296adantr 276 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑁 ∈ ℤ)
3029zred 9450 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑁 ∈ ℝ)
31 simprl 529 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ¬ 𝑁 < 𝑀)
3228, 30, 31nltled 8149 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑀𝑁)
33 eluz 9616 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
3427, 29, 33syl2anc 411 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
3532, 34mpbird 167 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑁 ∈ (ℤ𝑀))
36 oveq2 5931 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → (𝑀...𝑛) = (𝑀...𝑁))
3736eqeq2d 2208 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → ((𝑀...𝑁) = (𝑀...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑁)))
38 fveq2 5559 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
3938eqeq2d 2208 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
4037, 39anbi12d 473 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
4140adantl 277 . . . . . . . . . . 11 (((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) ∧ 𝑛 = 𝑁) → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
42 eqidd 2197 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → (𝑀...𝑁) = (𝑀...𝑁))
43 simprr 531 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
4442, 43jca 306 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
4535, 41, 44rspcedvd 2874 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
46 fveq2 5559 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
47 oveq1 5930 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (𝑚...𝑛) = (𝑀...𝑛))
4847eqeq2d 2208 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑛)))
49 seqeq1 10544 . . . . . . . . . . . . . . 15 (𝑚 = 𝑀 → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
5049fveq1d 5561 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑛))
5150eqeq2d 2208 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
5248, 51anbi12d 473 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
5346, 52rexeqbidv 2710 . . . . . . . . . . 11 (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
5453spcegv 2852 . . . . . . . . . 10 (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5527, 45, 54sylc 62 . . . . . . . . 9 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
5655ex 115 . . . . . . . 8 (𝜑 → ((¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
57 eluzel2 9608 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑚) → 𝑚 ∈ ℤ)
5857ad2antlr 489 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 ∈ ℤ)
5958zred 9450 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 ∈ ℝ)
60 eluzelre 9613 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → 𝑛 ∈ ℝ)
6160ad2antlr 489 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑛 ∈ ℝ)
62 eluzle 9615 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → 𝑚𝑛)
6362ad2antlr 489 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚𝑛)
6459, 61, 63lensymd 8150 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ¬ 𝑛 < 𝑚)
65 simprl 529 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑀...𝑁) = (𝑚...𝑛))
6665eqcomd 2202 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚...𝑛) = (𝑀...𝑁))
67 fzopth 10138 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
6867ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
6966, 68mpbid 147 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚 = 𝑀𝑛 = 𝑁))
7069simprd 114 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑛 = 𝑁)
7169simpld 112 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 = 𝑀)
7270, 71breq12d 4047 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑛 < 𝑚𝑁 < 𝑀))
7364, 72mtbid 673 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ¬ 𝑁 < 𝑀)
74 simprr 531 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))
7571seqeq1d 10547 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
7675, 70fveq12d 5566 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
7774, 76eqtrd 2229 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
7873, 77jca 306 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
7978rexlimdva2 2617 . . . . . . . . 9 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
8079exlimdv 1833 . . . . . . . 8 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
8156, 80impbid 129 . . . . . . 7 (𝜑 → ((¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
8226, 81orbi12d 794 . . . . . 6 (𝜑 → (((𝑁 < 𝑀𝑥 = 0 ) ∨ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
8323, 82bitr2d 189 . . . . 5 (𝜑 → ((((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ 𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁))))
8483adantr 276 . . . 4 ((𝜑 ∧ if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ∈ V) → ((((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ 𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁))))
8584iota5 5241 . . 3 ((𝜑 ∧ if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ∈ V) → (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))
8619, 85mpdan 421 . 2 (𝜑 → (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))
879, 86eqtrd 2229 1 (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wex 1506  wcel 2167  wrex 2476  Vcvv 2763  c0 3451  ifcif 3562   class class class wbr 4034  cio 5218   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5923  Fincfn 6800  cr 7880   < clt 8063  cle 8064  cz 9328  cuz 9603  ...cfz 10085  seqcseq 10541  Basecbs 12688  +gcplusg 12765  0gc0g 12937   Σg cgsu 12938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-1o 6475  df-er 6593  df-en 6801  df-fin 6803  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-inn 8993  df-n0 9252  df-z 9329  df-uz 9604  df-fz 10086  df-seqfrec 10542  df-ndx 12691  df-slot 12692  df-base 12694  df-0g 12939  df-igsum 12940
This theorem is referenced by:  gsumfzz  13137  gsumfzcl  13141  gsumfzreidx  13477  gsumfzsubmcl  13478  gsumfzmptfidmadd  13479  gsumfzmhm  13483
  Copyright terms: Public domain W3C validator