| Step | Hyp | Ref
| Expression |
| 1 | | gsumval.b |
. . 3
⊢ 𝐵 = (Base‘𝐺) |
| 2 | | gsumval.z |
. . 3
⊢ 0 =
(0g‘𝐺) |
| 3 | | gsumval.p |
. . 3
⊢ + =
(+g‘𝐺) |
| 4 | | gsumval.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| 5 | | gsumfzval.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 6 | | gsumfzval.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 7 | 5, 6 | fzfigd 10525 |
. . 3
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
| 8 | | gsumfzval.f |
. . 3
⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) |
| 9 | 1, 2, 3, 4, 7, 8 | igsumval 13043 |
. 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |
| 10 | | fn0g 13028 |
. . . . . 6
⊢
0g Fn V |
| 11 | 4 | elexd 2776 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ V) |
| 12 | | funfvex 5576 |
. . . . . . 7
⊢ ((Fun
0g ∧ 𝐺
∈ dom 0g) → (0g‘𝐺) ∈ V) |
| 13 | 12 | funfni 5359 |
. . . . . 6
⊢
((0g Fn V ∧ 𝐺 ∈ V) → (0g‘𝐺) ∈ V) |
| 14 | 10, 11, 13 | sylancr 414 |
. . . . 5
⊢ (𝜑 → (0g‘𝐺) ∈ V) |
| 15 | 2, 14 | eqeltrid 2283 |
. . . 4
⊢ (𝜑 → 0 ∈ V) |
| 16 | | seqex 10543 |
. . . . 5
⊢ seq𝑀( + , 𝐹) ∈ V |
| 17 | | fvexg 5578 |
. . . . 5
⊢
((seq𝑀( + , 𝐹) ∈ V ∧ 𝑁 ∈ ℤ) →
(seq𝑀( + , 𝐹)‘𝑁) ∈ V) |
| 18 | 16, 6, 17 | sylancr 414 |
. . . 4
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ V) |
| 19 | 15, 18 | ifexd 4520 |
. . 3
⊢ (𝜑 → if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ∈ V) |
| 20 | | zdclt 9405 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
DECID 𝑁 <
𝑀) |
| 21 | 6, 5, 20 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → DECID 𝑁 < 𝑀) |
| 22 | | eqifdc 3597 |
. . . . . . 7
⊢
(DECID 𝑁 < 𝑀 → (𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((𝑁 < 𝑀 ∧ 𝑥 = 0 ) ∨ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))) |
| 23 | 21, 22 | syl 14 |
. . . . . 6
⊢ (𝜑 → (𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((𝑁 < 𝑀 ∧ 𝑥 = 0 ) ∨ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))) |
| 24 | | fzn 10119 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) |
| 25 | 5, 6, 24 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) |
| 26 | 25 | anbi1d 465 |
. . . . . . 7
⊢ (𝜑 → ((𝑁 < 𝑀 ∧ 𝑥 = 0 ) ↔ ((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ))) |
| 27 | 5 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑀 ∈ ℤ) |
| 28 | 27 | zred 9450 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑀 ∈ ℝ) |
| 29 | 6 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑁 ∈ ℤ) |
| 30 | 29 | zred 9450 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑁 ∈ ℝ) |
| 31 | | simprl 529 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ¬ 𝑁 < 𝑀) |
| 32 | 28, 30, 31 | nltled 8149 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑀 ≤ 𝑁) |
| 33 | | eluz 9616 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| 34 | 27, 29, 33 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
| 35 | 32, 34 | mpbird 167 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 36 | | oveq2 5931 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑁 → (𝑀...𝑛) = (𝑀...𝑁)) |
| 37 | 36 | eqeq2d 2208 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑁 → ((𝑀...𝑁) = (𝑀...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑁))) |
| 38 | | fveq2 5559 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 39 | 38 | eqeq2d 2208 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑁 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) |
| 40 | 37, 39 | anbi12d 473 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑁 → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))) |
| 41 | 40 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) ∧ 𝑛 = 𝑁) → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))) |
| 42 | | eqidd 2197 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → (𝑀...𝑁) = (𝑀...𝑁)) |
| 43 | | simprr 531 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) |
| 44 | 42, 43 | jca 306 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) |
| 45 | 35, 41, 44 | rspcedvd 2874 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ∃𝑛 ∈ (ℤ≥‘𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))) |
| 46 | | fveq2 5559 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑀 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑀)) |
| 47 | | oveq1 5930 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑀 → (𝑚...𝑛) = (𝑀...𝑛)) |
| 48 | 47 | eqeq2d 2208 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑀 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑛))) |
| 49 | | seqeq1 10544 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑀 → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹)) |
| 50 | 49 | fveq1d 5561 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑀 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑛)) |
| 51 | 50 | eqeq2d 2208 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑀 → (𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))) |
| 52 | 48, 51 | anbi12d 473 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑀 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))) |
| 53 | 46, 52 | rexeqbidv 2710 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ≥‘𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))) |
| 54 | 53 | spcegv 2852 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ →
(∃𝑛 ∈
(ℤ≥‘𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) → ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) |
| 55 | 27, 45, 54 | sylc 62 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) |
| 56 | 55 | ex 115 |
. . . . . . . 8
⊢ (𝜑 → ((¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) |
| 57 | | eluzel2 9608 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → 𝑚 ∈ ℤ) |
| 58 | 57 | ad2antlr 489 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 ∈ ℤ) |
| 59 | 58 | zred 9450 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 ∈ ℝ) |
| 60 | | eluzelre 9613 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → 𝑛 ∈ ℝ) |
| 61 | 60 | ad2antlr 489 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑛 ∈ ℝ) |
| 62 | | eluzle 9615 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → 𝑚 ≤ 𝑛) |
| 63 | 62 | ad2antlr 489 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 ≤ 𝑛) |
| 64 | 59, 61, 63 | lensymd 8150 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ¬ 𝑛 < 𝑚) |
| 65 | | simprl 529 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑀...𝑁) = (𝑚...𝑛)) |
| 66 | 65 | eqcomd 2202 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚...𝑛) = (𝑀...𝑁)) |
| 67 | | fzopth 10138 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑚 = 𝑀 ∧ 𝑛 = 𝑁))) |
| 68 | 67 | ad2antlr 489 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑚 = 𝑀 ∧ 𝑛 = 𝑁))) |
| 69 | 66, 68 | mpbid 147 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚 = 𝑀 ∧ 𝑛 = 𝑁)) |
| 70 | 69 | simprd 114 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑛 = 𝑁) |
| 71 | 69 | simpld 112 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 = 𝑀) |
| 72 | 70, 71 | breq12d 4047 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑛 < 𝑚 ↔ 𝑁 < 𝑀)) |
| 73 | 64, 72 | mtbid 673 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ¬ 𝑁 < 𝑀) |
| 74 | | simprr 531 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) |
| 75 | 71 | seqeq1d 10547 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹)) |
| 76 | 75, 70 | fveq12d 5566 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 77 | 74, 76 | eqtrd 2229 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) |
| 78 | 73, 77 | jca 306 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) |
| 79 | 78 | rexlimdva2 2617 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))) |
| 80 | 79 | exlimdv 1833 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))) |
| 81 | 56, 80 | impbid 129 |
. . . . . . 7
⊢ (𝜑 → ((¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) ↔ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) |
| 82 | 26, 81 | orbi12d 794 |
. . . . . 6
⊢ (𝜑 → (((𝑁 < 𝑀 ∧ 𝑥 = 0 ) ∨ (¬ 𝑁 < 𝑀 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |
| 83 | 23, 82 | bitr2d 189 |
. . . . 5
⊢ (𝜑 → ((((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ 𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))) |
| 84 | 83 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ∈ V) → ((((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ 𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))) |
| 85 | 84 | iota5 5241 |
. . 3
⊢ ((𝜑 ∧ if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ∈ V) → (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁))) |
| 86 | 19, 85 | mpdan 421 |
. 2
⊢ (𝜑 → (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁))) |
| 87 | 9, 86 | eqtrd 2229 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁))) |