ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzval GIF version

Theorem gsumfzval 13095
Description: An expression for Σg when summing over a finite set of sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.)
Hypotheses
Ref Expression
gsumval.b 𝐵 = (Base‘𝐺)
gsumval.z 0 = (0g𝐺)
gsumval.p + = (+g𝐺)
gsumval.g (𝜑𝐺𝑉)
gsumfzval.m (𝜑𝑀 ∈ ℤ)
gsumfzval.n (𝜑𝑁 ∈ ℤ)
gsumfzval.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumfzval (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))

Proof of Theorem gsumfzval
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval.b . . 3 𝐵 = (Base‘𝐺)
2 gsumval.z . . 3 0 = (0g𝐺)
3 gsumval.p . . 3 + = (+g𝐺)
4 gsumval.g . . 3 (𝜑𝐺𝑉)
5 gsumfzval.m . . . 4 (𝜑𝑀 ∈ ℤ)
6 gsumfzval.n . . . 4 (𝜑𝑁 ∈ ℤ)
75, 6fzfigd 10542 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
8 gsumfzval.f . . 3 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
91, 2, 3, 4, 7, 8igsumval 13094 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
10 fn0g 13079 . . . . . 6 0g Fn V
114elexd 2776 . . . . . 6 (𝜑𝐺 ∈ V)
12 funfvex 5578 . . . . . . 7 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
1312funfni 5361 . . . . . 6 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
1410, 11, 13sylancr 414 . . . . 5 (𝜑 → (0g𝐺) ∈ V)
152, 14eqeltrid 2283 . . . 4 (𝜑0 ∈ V)
16 seqex 10560 . . . . 5 seq𝑀( + , 𝐹) ∈ V
17 fvexg 5580 . . . . 5 ((seq𝑀( + , 𝐹) ∈ V ∧ 𝑁 ∈ ℤ) → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
1816, 6, 17sylancr 414 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
1915, 18ifexd 4520 . . 3 (𝜑 → if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ∈ V)
20 zdclt 9422 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀)
216, 5, 20syl2anc 411 . . . . . . 7 (𝜑DECID 𝑁 < 𝑀)
22 eqifdc 3597 . . . . . . 7 (DECID 𝑁 < 𝑀 → (𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((𝑁 < 𝑀𝑥 = 0 ) ∨ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))))
2321, 22syl 14 . . . . . 6 (𝜑 → (𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((𝑁 < 𝑀𝑥 = 0 ) ∨ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))))
24 fzn 10136 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
255, 6, 24syl2anc 411 . . . . . . . 8 (𝜑 → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
2625anbi1d 465 . . . . . . 7 (𝜑 → ((𝑁 < 𝑀𝑥 = 0 ) ↔ ((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 )))
275adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑀 ∈ ℤ)
2827zred 9467 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑀 ∈ ℝ)
296adantr 276 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑁 ∈ ℤ)
3029zred 9467 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑁 ∈ ℝ)
31 simprl 529 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ¬ 𝑁 < 𝑀)
3228, 30, 31nltled 8166 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑀𝑁)
33 eluz 9633 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
3427, 29, 33syl2anc 411 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
3532, 34mpbird 167 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑁 ∈ (ℤ𝑀))
36 oveq2 5933 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → (𝑀...𝑛) = (𝑀...𝑁))
3736eqeq2d 2208 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → ((𝑀...𝑁) = (𝑀...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑁)))
38 fveq2 5561 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
3938eqeq2d 2208 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
4037, 39anbi12d 473 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
4140adantl 277 . . . . . . . . . . 11 (((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) ∧ 𝑛 = 𝑁) → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
42 eqidd 2197 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → (𝑀...𝑁) = (𝑀...𝑁))
43 simprr 531 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
4442, 43jca 306 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
4535, 41, 44rspcedvd 2874 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
46 fveq2 5561 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
47 oveq1 5932 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (𝑚...𝑛) = (𝑀...𝑛))
4847eqeq2d 2208 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑛)))
49 seqeq1 10561 . . . . . . . . . . . . . . 15 (𝑚 = 𝑀 → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
5049fveq1d 5563 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑛))
5150eqeq2d 2208 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
5248, 51anbi12d 473 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
5346, 52rexeqbidv 2710 . . . . . . . . . . 11 (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
5453spcegv 2852 . . . . . . . . . 10 (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5527, 45, 54sylc 62 . . . . . . . . 9 ((𝜑 ∧ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
5655ex 115 . . . . . . . 8 (𝜑 → ((¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
57 eluzel2 9625 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑚) → 𝑚 ∈ ℤ)
5857ad2antlr 489 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 ∈ ℤ)
5958zred 9467 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 ∈ ℝ)
60 eluzelre 9630 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → 𝑛 ∈ ℝ)
6160ad2antlr 489 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑛 ∈ ℝ)
62 eluzle 9632 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → 𝑚𝑛)
6362ad2antlr 489 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚𝑛)
6459, 61, 63lensymd 8167 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ¬ 𝑛 < 𝑚)
65 simprl 529 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑀...𝑁) = (𝑚...𝑛))
6665eqcomd 2202 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚...𝑛) = (𝑀...𝑁))
67 fzopth 10155 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
6867ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
6966, 68mpbid 147 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚 = 𝑀𝑛 = 𝑁))
7069simprd 114 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑛 = 𝑁)
7169simpld 112 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 = 𝑀)
7270, 71breq12d 4047 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑛 < 𝑚𝑁 < 𝑀))
7364, 72mtbid 673 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ¬ 𝑁 < 𝑀)
74 simprr 531 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))
7571seqeq1d 10564 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
7675, 70fveq12d 5568 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
7774, 76eqtrd 2229 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
7873, 77jca 306 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
7978rexlimdva2 2617 . . . . . . . . 9 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
8079exlimdv 1833 . . . . . . . 8 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
8156, 80impbid 129 . . . . . . 7 (𝜑 → ((¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
8226, 81orbi12d 794 . . . . . 6 (𝜑 → (((𝑁 < 𝑀𝑥 = 0 ) ∨ (¬ 𝑁 < 𝑀𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
8323, 82bitr2d 189 . . . . 5 (𝜑 → ((((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ 𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁))))
8483adantr 276 . . . 4 ((𝜑 ∧ if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ∈ V) → ((((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ 𝑥 = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁))))
8584iota5 5241 . . 3 ((𝜑 ∧ if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)) ∈ V) → (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))
8619, 85mpdan 421 . 2 (𝜑 → (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))
879, 86eqtrd 2229 1 (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wex 1506  wcel 2167  wrex 2476  Vcvv 2763  c0 3451  ifcif 3562   class class class wbr 4034  cio 5218   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5925  Fincfn 6808  cr 7897   < clt 8080  cle 8081  cz 9345  cuz 9620  ...cfz 10102  seqcseq 10558  Basecbs 12705  +gcplusg 12782  0gc0g 12960   Σg cgsu 12961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-n0 9269  df-z 9346  df-uz 9621  df-fz 10103  df-seqfrec 10559  df-ndx 12708  df-slot 12709  df-base 12711  df-0g 12962  df-igsum 12963
This theorem is referenced by:  gsumfzz  13199  gsumfzcl  13203  gsumfzreidx  13545  gsumfzsubmcl  13546  gsumfzmptfidmadd  13547  gsumfzmhm  13551
  Copyright terms: Public domain W3C validator