| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pfxval | GIF version | ||
| Description: Value of a prefix operation. (Contributed by AV, 2-May-2020.) |
| Ref | Expression |
|---|---|
| pfxval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pfx 11164 | . . 3 ⊢ prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr 〈0, 𝑙〉)) | |
| 2 | 1 | a1i 9 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr 〈0, 𝑙〉))) |
| 3 | simpl 109 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑙 = 𝐿) → 𝑠 = 𝑆) | |
| 4 | opeq2 3834 | . . . . 5 ⊢ (𝑙 = 𝐿 → 〈0, 𝑙〉 = 〈0, 𝐿〉) | |
| 5 | 4 | adantl 277 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑙 = 𝐿) → 〈0, 𝑙〉 = 〈0, 𝐿〉) |
| 6 | 3, 5 | oveq12d 5985 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑙 = 𝐿) → (𝑠 substr 〈0, 𝑙〉) = (𝑆 substr 〈0, 𝐿〉)) |
| 7 | 6 | adantl 277 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) ∧ (𝑠 = 𝑆 ∧ 𝑙 = 𝐿)) → (𝑠 substr 〈0, 𝑙〉) = (𝑆 substr 〈0, 𝐿〉)) |
| 8 | elex 2788 | . . 3 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
| 9 | 8 | adantr 276 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 𝑆 ∈ V) |
| 10 | simpr 110 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ0) | |
| 11 | simpl 109 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 𝑆 ∈ 𝑉) | |
| 12 | 0zd 9419 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 0 ∈ ℤ) | |
| 13 | 10 | nn0zd 9528 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℤ) |
| 14 | swrdval 11139 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 0 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈0, 𝐿〉) = if((0..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))), ∅)) | |
| 15 | 11, 12, 13, 14 | syl3anc 1250 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 substr 〈0, 𝐿〉) = if((0..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))), ∅)) |
| 16 | 0z 9418 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 17 | 13, 12 | zsubcld 9535 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝐿 − 0) ∈ ℤ) |
| 18 | fzofig 10614 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ (𝐿 − 0) ∈ ℤ) → (0..^(𝐿 − 0)) ∈ Fin) | |
| 19 | 16, 17, 18 | sylancr 414 | . . . . 5 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (0..^(𝐿 − 0)) ∈ Fin) |
| 20 | 19 | mptexd 5834 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))) ∈ V) |
| 21 | 0ex 4187 | . . . . 5 ⊢ ∅ ∈ V | |
| 22 | 21 | a1i 9 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → ∅ ∈ V) |
| 23 | 20, 22 | ifexd 4549 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → if((0..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))), ∅) ∈ V) |
| 24 | 15, 23 | eqeltrd 2284 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 substr 〈0, 𝐿〉) ∈ V) |
| 25 | 2, 7, 9, 10, 24 | ovmpod 6096 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ⊆ wss 3174 ∅c0 3468 ifcif 3579 〈cop 3646 ↦ cmpt 4121 dom cdm 4693 ‘cfv 5290 (class class class)co 5967 ∈ cmpo 5969 Fincfn 6850 0cc0 7960 + caddc 7963 − cmin 8278 ℕ0cn0 9330 ℤcz 9407 ..^cfzo 10299 substr csubstr 11136 prefix cpfx 11163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-er 6643 df-en 6851 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-fzo 10300 df-substr 11137 df-pfx 11164 |
| This theorem is referenced by: pfx00g 11166 pfx0g 11167 pfxclg 11169 pfxmpt 11171 pfxfv 11175 pfxnd 11180 pfxwrdsymbg 11181 pfx1 11194 pfxswrd 11197 swrdpfx 11198 pfxpfx 11199 swrdccat 11226 pfxccatpfx1 11227 pfxccatpfx2 11228 |
| Copyright terms: Public domain | W3C validator |