| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pfxval | GIF version | ||
| Description: Value of a prefix operation. (Contributed by AV, 2-May-2020.) |
| Ref | Expression |
|---|---|
| pfxval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pfx 11205 | . . 3 ⊢ prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr 〈0, 𝑙〉)) | |
| 2 | 1 | a1i 9 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr 〈0, 𝑙〉))) |
| 3 | simpl 109 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑙 = 𝐿) → 𝑠 = 𝑆) | |
| 4 | opeq2 3858 | . . . . 5 ⊢ (𝑙 = 𝐿 → 〈0, 𝑙〉 = 〈0, 𝐿〉) | |
| 5 | 4 | adantl 277 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑙 = 𝐿) → 〈0, 𝑙〉 = 〈0, 𝐿〉) |
| 6 | 3, 5 | oveq12d 6019 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑙 = 𝐿) → (𝑠 substr 〈0, 𝑙〉) = (𝑆 substr 〈0, 𝐿〉)) |
| 7 | 6 | adantl 277 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) ∧ (𝑠 = 𝑆 ∧ 𝑙 = 𝐿)) → (𝑠 substr 〈0, 𝑙〉) = (𝑆 substr 〈0, 𝐿〉)) |
| 8 | elex 2811 | . . 3 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
| 9 | 8 | adantr 276 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 𝑆 ∈ V) |
| 10 | simpr 110 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ0) | |
| 11 | simpl 109 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 𝑆 ∈ 𝑉) | |
| 12 | 0zd 9458 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 0 ∈ ℤ) | |
| 13 | 10 | nn0zd 9567 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℤ) |
| 14 | swrdval 11180 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 0 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈0, 𝐿〉) = if((0..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))), ∅)) | |
| 15 | 11, 12, 13, 14 | syl3anc 1271 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 substr 〈0, 𝐿〉) = if((0..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))), ∅)) |
| 16 | 0z 9457 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 17 | 13, 12 | zsubcld 9574 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝐿 − 0) ∈ ℤ) |
| 18 | fzofig 10654 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ (𝐿 − 0) ∈ ℤ) → (0..^(𝐿 − 0)) ∈ Fin) | |
| 19 | 16, 17, 18 | sylancr 414 | . . . . 5 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (0..^(𝐿 − 0)) ∈ Fin) |
| 20 | 19 | mptexd 5866 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))) ∈ V) |
| 21 | 0ex 4211 | . . . . 5 ⊢ ∅ ∈ V | |
| 22 | 21 | a1i 9 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → ∅ ∈ V) |
| 23 | 20, 22 | ifexd 4575 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → if((0..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))), ∅) ∈ V) |
| 24 | 15, 23 | eqeltrd 2306 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 substr 〈0, 𝐿〉) ∈ V) |
| 25 | 2, 7, 9, 10, 24 | ovmpod 6132 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ∅c0 3491 ifcif 3602 〈cop 3669 ↦ cmpt 4145 dom cdm 4719 ‘cfv 5318 (class class class)co 6001 ∈ cmpo 6003 Fincfn 6887 0cc0 7999 + caddc 8002 − cmin 8317 ℕ0cn0 9369 ℤcz 9446 ..^cfzo 10338 substr csubstr 11177 prefix cpfx 11204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-1o 6562 df-er 6680 df-en 6888 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 df-fzo 10339 df-substr 11178 df-pfx 11205 |
| This theorem is referenced by: pfx00g 11207 pfx0g 11208 pfxclg 11210 pfxmpt 11212 pfxfv 11216 pfxnd 11221 pfxwrdsymbg 11222 pfx1 11235 pfxswrd 11238 swrdpfx 11239 pfxpfx 11240 swrdccat 11267 pfxccatpfx1 11268 pfxccatpfx2 11269 |
| Copyright terms: Public domain | W3C validator |