| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ccatvalfn | GIF version | ||
| Description: The concatenation of two words is a function over the half-open integer range having the sum of the lengths of the word as length. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
| Ref | Expression |
|---|---|
| ccatvalfn | ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexg 5608 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) → (𝐴‘𝑥) ∈ V) | |
| 2 | 1 | adantlr 477 | . . . . 5 ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) → (𝐴‘𝑥) ∈ V) |
| 3 | simplr 528 | . . . . . 6 ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) → 𝐵 ∈ Word 𝑉) | |
| 4 | elfzoelz 10289 | . . . . . . . 8 ⊢ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) → 𝑥 ∈ ℤ) | |
| 5 | 4 | adantl 277 | . . . . . . 7 ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) → 𝑥 ∈ ℤ) |
| 6 | lencl 11020 | . . . . . . . . 9 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0) | |
| 7 | 6 | nn0zd 9513 | . . . . . . . 8 ⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ) |
| 8 | 7 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) → (♯‘𝐴) ∈ ℤ) |
| 9 | 5, 8 | zsubcld 9520 | . . . . . 6 ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) → (𝑥 − (♯‘𝐴)) ∈ ℤ) |
| 10 | fvexg 5608 | . . . . . 6 ⊢ ((𝐵 ∈ Word 𝑉 ∧ (𝑥 − (♯‘𝐴)) ∈ ℤ) → (𝐵‘(𝑥 − (♯‘𝐴))) ∈ V) | |
| 11 | 3, 9, 10 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) → (𝐵‘(𝑥 − (♯‘𝐴))) ∈ V) |
| 12 | 2, 11 | ifexd 4539 | . . . 4 ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) → if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V) |
| 13 | 12 | ralrimiva 2580 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V) |
| 14 | eqid 2206 | . . . 4 ⊢ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) | |
| 15 | 14 | fnmpt 5412 | . . 3 ⊢ (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V → (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))) |
| 16 | 13, 15 | syl 14 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))) |
| 17 | wrdfin 11035 | . . . 4 ⊢ (𝐴 ∈ Word 𝑉 → 𝐴 ∈ Fin) | |
| 18 | wrdfin 11035 | . . . 4 ⊢ (𝐵 ∈ Word 𝑉 → 𝐵 ∈ Fin) | |
| 19 | ccatfvalfi 11071 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) | |
| 20 | 17, 18, 19 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) |
| 21 | 20 | fneq1d 5373 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) Fn (0..^((♯‘𝐴) + (♯‘𝐵))))) |
| 22 | 16, 21 | mpbird 167 | 1 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 ifcif 3575 ↦ cmpt 4113 Fn wfn 5275 ‘cfv 5280 (class class class)co 5957 Fincfn 6840 0cc0 7945 + caddc 7948 − cmin 8263 ℤcz 9392 ..^cfzo 10284 ♯chash 10942 Word cword 11016 ++ cconcat 11069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-1o 6515 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-fz 10151 df-fzo 10285 df-ihash 10943 df-word 11017 df-concat 11070 |
| This theorem is referenced by: ccatlid 11085 ccatrid 11086 ccatrn 11088 pfxccat1 11178 |
| Copyright terms: Public domain | W3C validator |