| Step | Hyp | Ref
| Expression |
| 1 | | df-substr 11099 |
. . 3
⊢ substr =
(𝑠 ∈ V, 𝑏 ∈ (ℤ ×
ℤ) ↦ if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) |
| 2 | 1 | a1i 9 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦
if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅))) |
| 3 | | simprl 529 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝐿〉)) → 𝑠 = 𝑆) |
| 4 | | fveq2 5576 |
. . . . 5
⊢ (𝑏 = 〈𝐹, 𝐿〉 → (1st ‘𝑏) = (1st
‘〈𝐹, 𝐿〉)) |
| 5 | 4 | adantl 277 |
. . . 4
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝐿〉) → (1st ‘𝑏) = (1st
‘〈𝐹, 𝐿〉)) |
| 6 | | op1stg 6236 |
. . . . 5
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) →
(1st ‘〈𝐹, 𝐿〉) = 𝐹) |
| 7 | 6 | 3adant1 1018 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1st
‘〈𝐹, 𝐿〉) = 𝐹) |
| 8 | 5, 7 | sylan9eqr 2260 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝐿〉)) → (1st ‘𝑏) = 𝐹) |
| 9 | | fveq2 5576 |
. . . . 5
⊢ (𝑏 = 〈𝐹, 𝐿〉 → (2nd ‘𝑏) = (2nd
‘〈𝐹, 𝐿〉)) |
| 10 | 9 | adantl 277 |
. . . 4
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝐿〉) → (2nd ‘𝑏) = (2nd
‘〈𝐹, 𝐿〉)) |
| 11 | | op2ndg 6237 |
. . . . 5
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) →
(2nd ‘〈𝐹, 𝐿〉) = 𝐿) |
| 12 | 11 | 3adant1 1018 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (2nd
‘〈𝐹, 𝐿〉) = 𝐿) |
| 13 | 10, 12 | sylan9eqr 2260 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝐿〉)) → (2nd ‘𝑏) = 𝐿) |
| 14 | | simp2 1001 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ (1st ‘𝑏) = 𝐹 ∧ (2nd ‘𝑏) = 𝐿) → (1st ‘𝑏) = 𝐹) |
| 15 | | simp3 1002 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ (1st ‘𝑏) = 𝐹 ∧ (2nd ‘𝑏) = 𝐿) → (2nd ‘𝑏) = 𝐿) |
| 16 | 14, 15 | oveq12d 5962 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ (1st ‘𝑏) = 𝐹 ∧ (2nd ‘𝑏) = 𝐿) → ((1st ‘𝑏)..^(2nd ‘𝑏)) = (𝐹..^𝐿)) |
| 17 | | simp1 1000 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ (1st ‘𝑏) = 𝐹 ∧ (2nd ‘𝑏) = 𝐿) → 𝑠 = 𝑆) |
| 18 | 17 | dmeqd 4880 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ (1st ‘𝑏) = 𝐹 ∧ (2nd ‘𝑏) = 𝐿) → dom 𝑠 = dom 𝑆) |
| 19 | 16, 18 | sseq12d 3224 |
. . . 4
⊢ ((𝑠 = 𝑆 ∧ (1st ‘𝑏) = 𝐹 ∧ (2nd ‘𝑏) = 𝐿) → (((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠 ↔ (𝐹..^𝐿) ⊆ dom 𝑆)) |
| 20 | 15, 14 | oveq12d 5962 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ (1st ‘𝑏) = 𝐹 ∧ (2nd ‘𝑏) = 𝐿) → ((2nd ‘𝑏) − (1st
‘𝑏)) = (𝐿 − 𝐹)) |
| 21 | 20 | oveq2d 5960 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ (1st ‘𝑏) = 𝐹 ∧ (2nd ‘𝑏) = 𝐿) → (0..^((2nd ‘𝑏) − (1st
‘𝑏))) = (0..^(𝐿 − 𝐹))) |
| 22 | 14 | oveq2d 5960 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ (1st ‘𝑏) = 𝐹 ∧ (2nd ‘𝑏) = 𝐿) → (𝑥 + (1st ‘𝑏)) = (𝑥 + 𝐹)) |
| 23 | 17, 22 | fveq12d 5583 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ (1st ‘𝑏) = 𝐹 ∧ (2nd ‘𝑏) = 𝐿) → (𝑠‘(𝑥 + (1st ‘𝑏))) = (𝑆‘(𝑥 + 𝐹))) |
| 24 | 21, 23 | mpteq12dv 4126 |
. . . 4
⊢ ((𝑠 = 𝑆 ∧ (1st ‘𝑏) = 𝐹 ∧ (2nd ‘𝑏) = 𝐿) → (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))) = (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹)))) |
| 25 | 19, 24 | ifbieq1d 3593 |
. . 3
⊢ ((𝑠 = 𝑆 ∧ (1st ‘𝑏) = 𝐹 ∧ (2nd ‘𝑏) = 𝐿) → if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅)) |
| 26 | 3, 8, 13, 25 | syl3anc 1250 |
. 2
⊢ (((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝐿〉)) → if(((1st
‘𝑏)..^(2nd
‘𝑏)) ⊆ dom
𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅)) |
| 27 | | elex 2783 |
. . 3
⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) |
| 28 | 27 | 3ad2ant1 1021 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝑆 ∈ V) |
| 29 | | opelxpi 4707 |
. . 3
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) →
〈𝐹, 𝐿〉 ∈ (ℤ ×
ℤ)) |
| 30 | 29 | 3adant1 1018 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 〈𝐹, 𝐿〉 ∈ (ℤ ×
ℤ)) |
| 31 | | 0zd 9384 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈
ℤ) |
| 32 | | simp3 1002 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℤ) |
| 33 | | simp2 1001 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 ∈ ℤ) |
| 34 | 32, 33 | zsubcld 9500 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 − 𝐹) ∈ ℤ) |
| 35 | | fzofig 10577 |
. . . . 5
⊢ ((0
∈ ℤ ∧ (𝐿
− 𝐹) ∈ ℤ)
→ (0..^(𝐿 −
𝐹)) ∈
Fin) |
| 36 | 31, 34, 35 | syl2anc 411 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0..^(𝐿 − 𝐹)) ∈ Fin) |
| 37 | 36 | mptexd 5811 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) ∈ V) |
| 38 | | 0ex 4171 |
. . . 4
⊢ ∅
∈ V |
| 39 | 38 | a1i 9 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ∅ ∈
V) |
| 40 | 37, 39 | ifexd 4531 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅) ∈ V) |
| 41 | 2, 26, 28, 30, 40 | ovmpod 6073 |
1
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅)) |