Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elexd | GIF version |
Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
elexd | ⊢ (𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | elex 2741 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: ifexd 4469 dmmptd 5328 tfr1onlemsucfn 6319 tfrcllemsucfn 6332 frecrdg 6387 unsnfidcel 6898 fnfi 6914 caseinl 7068 caseinr 7069 omniwomnimkv 7143 nninfdcinf 7147 acfun 7184 seq3val 10414 seqvalcd 10415 hashennn 10714 lcmval 12017 hashdvds 12175 ennnfonelemp1 12361 isstruct2r 12427 strnfvnd 12436 strfvssn 12438 strslfv2d 12458 setsslid 12466 basmex 12474 basmexd 12475 ressid2 12477 ressval2 12478 ismgmn0 12612 ismhm 12685 0mhm 12704 istopon 12805 istps 12824 tgclb 12859 restbasg 12962 restco 12968 lmfval 12986 cnfval 12988 cnpfval 12989 cnpval 12992 txcnp 13065 txrest 13070 ismet2 13148 xmetpsmet 13163 mopnval 13236 comet 13293 reldvg 13442 dvmptclx 13474 |
Copyright terms: Public domain | W3C validator |