![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elexd | GIF version |
Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
elexd | ⊢ (𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | elex 2771 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 Vcvv 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: ifexd 4516 dmmptd 5385 tfr1onlemsucfn 6395 tfrcllemsucfn 6408 frecrdg 6463 unsnfidcel 6979 fnfi 6997 caseinl 7152 caseinr 7153 omniwomnimkv 7228 nninfdcinf 7232 acfun 7269 seq3val 10534 seqvalcd 10535 seqf1oglem2 10594 seqf1og 10595 hashennn 10854 wrdexg 10928 lcmval 12204 hashdvds 12362 ennnfonelemp1 12566 isstruct2r 12632 strnfvnd 12641 strfvssn 12643 strslfv2d 12664 setsslid 12672 basmex 12680 basmexd 12681 ressbas2d 12689 ressval3d 12693 prdsex 12883 imasival 12892 imasbas 12893 imasplusg 12894 imasmulr 12895 imasaddfn 12903 imasaddval 12904 imasaddf 12905 imasmulfn 12906 imasmulval 12907 imasmulf 12908 qusval 12909 qusaddflemg 12920 qusaddval 12921 qusaddf 12922 qusmulval 12923 qusmulf 12924 xpsfrnel 12930 xpsval 12938 ismgmn0 12944 igsumvalx 12975 gsumfzval 12977 gsumval2 12983 ress0g 13027 ismhm 13036 mhmex 13037 0mhm 13061 qusgrp2 13186 mulgval 13195 mulgfng 13197 mulg1 13202 mulgnnp1 13203 mulgnndir 13224 issubg2m 13262 1nsgtrivd 13292 eqgval 13296 eqgen 13300 rngpropd 13454 qusrng 13457 issrg 13464 ringidss 13528 ringpropd 13537 qusring2 13565 dvdsrvald 13592 dvdsrd 13593 isunitd 13605 invrfvald 13621 dvrfvald 13632 rdivmuldivd 13643 invrpropdg 13648 isrim0 13660 rhmunitinv 13677 subrgintm 13742 rrgmex 13760 aprval 13781 lssmex 13854 islss3 13878 sraval 13936 sralemg 13937 srascag 13941 sravscag 13942 sraipg 13943 sraex 13945 lidlmex 13974 lidlrsppropdg 13994 2idlmex 14000 qusrhm 14027 zrhval 14116 psrval 14163 psrbasg 14170 psrplusgg 14173 psraddcl 14175 istopon 14192 istps 14211 tgclb 14244 restbasg 14347 restco 14353 lmfval 14371 cnfval 14373 cnpfval 14374 cnpval 14377 txcnp 14450 txrest 14455 ismet2 14533 xmetpsmet 14548 mopnval 14621 comet 14678 reldvg 14858 dvmptclx 14897 lgseisenlem2 15228 |
Copyright terms: Public domain | W3C validator |