| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elexd | GIF version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) | 
| Ref | Expression | 
|---|---|
| elexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| Ref | Expression | 
|---|---|
| elexd | ⊢ (𝜑 → 𝐴 ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | elex 2774 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 Vcvv 2763 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: ifexd 4519 dmmptd 5388 tfr1onlemsucfn 6398 tfrcllemsucfn 6411 frecrdg 6466 unsnfidcel 6982 fnfi 7002 caseinl 7157 caseinr 7158 omniwomnimkv 7233 nninfdcinf 7237 acfun 7274 seq3val 10552 seqvalcd 10553 seqf1oglem2 10612 seqf1og 10613 hashennn 10872 wrdexg 10946 lcmval 12231 hashdvds 12389 ennnfonelemp1 12623 isstruct2r 12689 strnfvnd 12698 strfvssn 12700 strslfv2d 12721 setsslid 12729 basmex 12737 basmexd 12738 ressbas2d 12746 ressval3d 12750 prdsex 12940 imasival 12949 imasbas 12950 imasplusg 12951 imasmulr 12952 imasaddfn 12960 imasaddval 12961 imasaddf 12962 imasmulfn 12963 imasmulval 12964 imasmulf 12965 qusval 12966 qusaddflemg 12977 qusaddval 12978 qusaddf 12979 qusmulval 12980 qusmulf 12981 xpsfrnel 12987 xpsval 12995 ismgmn0 13001 igsumvalx 13032 gsumfzval 13034 gsumval2 13040 ress0g 13084 ismhm 13093 mhmex 13094 0mhm 13118 qusgrp2 13243 mulgval 13252 mulgfng 13254 mulg1 13259 mulgnnp1 13260 mulgnndir 13281 issubg2m 13319 1nsgtrivd 13349 eqgval 13353 eqgen 13357 rngpropd 13511 qusrng 13514 issrg 13521 ringidss 13585 ringpropd 13594 qusring2 13622 dvdsrvald 13649 dvdsrd 13650 isunitd 13662 invrfvald 13678 dvrfvald 13689 rdivmuldivd 13700 invrpropdg 13705 isrim0 13717 rhmunitinv 13734 subrgintm 13799 rrgmex 13817 aprval 13838 lssmex 13911 islss3 13935 sraval 13993 sralemg 13994 srascag 13998 sravscag 13999 sraipg 14000 sraex 14002 lidlmex 14031 lidlrsppropdg 14051 2idlmex 14057 qusrhm 14084 zrhval 14173 psrval 14220 psrbasg 14227 psrplusgg 14230 psraddcl 14232 istopon 14249 istps 14268 tgclb 14301 restbasg 14404 restco 14410 lmfval 14428 cnfval 14430 cnpfval 14431 cnpval 14434 txcnp 14507 txrest 14512 ismet2 14590 xmetpsmet 14605 mopnval 14678 comet 14735 reldvg 14915 dvmptclx 14954 lgseisenlem2 15312 | 
| Copyright terms: Public domain | W3C validator |