| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexd | GIF version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| elexd | ⊢ (𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | elex 2774 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: ifexd 4520 dmmptd 5391 tfr1onlemsucfn 6407 tfrcllemsucfn 6420 frecrdg 6475 unsnfidcel 6991 fnfi 7011 caseinl 7166 caseinr 7167 omniwomnimkv 7242 nninfdcinf 7246 acfun 7290 seq3val 10569 seqvalcd 10570 seqf1oglem2 10629 seqf1og 10630 hashennn 10889 wrdexg 10963 lcmval 12256 hashdvds 12414 ennnfonelemp1 12648 isstruct2r 12714 strnfvnd 12723 strfvssn 12725 strslfv2d 12746 setsslid 12754 basmex 12762 basmexd 12763 ressbas2d 12771 ressval3d 12775 prdsex 12971 prdsval 12975 prdsbaslemss 12976 imasival 13008 imasbas 13009 imasplusg 13010 imasmulr 13011 imasaddfn 13019 imasaddval 13020 imasaddf 13021 imasmulfn 13022 imasmulval 13023 imasmulf 13024 qusval 13025 qusaddflemg 13036 qusaddval 13037 qusaddf 13038 qusmulval 13039 qusmulf 13040 xpsfrnel 13046 xpsval 13054 ismgmn0 13060 igsumvalx 13091 gsumfzval 13093 gsumval2 13099 prdssgrpd 13117 ress0g 13145 prdsidlem 13149 prdsmndd 13150 prds0g 13151 ismhm 13163 mhmex 13164 0mhm 13188 prdsgrpd 13311 prdsinvgd 13312 qusgrp2 13319 mulgval 13328 mulgfng 13330 mulg1 13335 mulgnnp1 13336 mulgnndir 13357 issubg2m 13395 1nsgtrivd 13425 eqgval 13429 eqgen 13433 rngpropd 13587 qusrng 13590 issrg 13597 ringidss 13661 ringpropd 13670 qusring2 13698 dvdsrvald 13725 dvdsrd 13726 isunitd 13738 invrfvald 13754 dvrfvald 13765 rdivmuldivd 13776 invrpropdg 13781 isrim0 13793 rhmunitinv 13810 subrgintm 13875 rrgmex 13893 aprval 13914 lssmex 13987 islss3 14011 sraval 14069 sralemg 14070 srascag 14074 sravscag 14075 sraipg 14076 sraex 14078 lidlmex 14107 lidlrsppropdg 14127 2idlmex 14133 qusrhm 14160 zrhval 14249 psrval 14296 psrbasg 14303 psrplusgg 14306 psraddcl 14308 psr0cl 14309 psr0lid 14310 psrnegcl 14311 psrlinv 14312 psrgrp 14313 psr1clfi 14316 istopon 14333 istps 14352 tgclb 14385 restbasg 14488 restco 14494 lmfval 14512 cnfval 14514 cnpfval 14515 cnpval 14518 txcnp 14591 txrest 14596 ismet2 14674 xmetpsmet 14689 mopnval 14762 comet 14819 reldvg 14999 dvmptclx 15038 lgseisenlem2 15396 |
| Copyright terms: Public domain | W3C validator |