| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexd | GIF version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| elexd | ⊢ (𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | elex 2811 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: ifexd 4574 dmmptd 5453 tfr1onlemsucfn 6484 tfrcllemsucfn 6497 frecrdg 6552 unsnfidcel 7079 fnfi 7099 caseinl 7254 caseinr 7255 omniwomnimkv 7330 nninfdcinf 7334 acfun 7385 seq3val 10677 seqvalcd 10678 seqf1oglem2 10737 seqf1og 10738 hashennn 10997 wrdexg 11077 lswex 11118 swrdspsleq 11194 cats1un 11248 cats1fvd 11293 s3fv0g 11318 s3fv1g 11319 lcmval 12580 hashdvds 12738 ennnfonelemp1 12972 isstruct2r 13038 strnfvnd 13047 strfvssn 13049 strslfv2d 13070 setsslid 13078 basmex 13087 basmexd 13088 ressbas2d 13096 ressval3d 13100 prdsex 13297 prdsval 13301 prdsbaslemss 13302 imasival 13334 imasbas 13335 imasplusg 13336 imasmulr 13337 imasaddfn 13345 imasaddval 13346 imasaddf 13347 imasmulfn 13348 imasmulval 13349 imasmulf 13350 qusval 13351 qusaddflemg 13362 qusaddval 13363 qusaddf 13364 qusmulval 13365 qusmulf 13366 xpsfrnel 13372 xpsval 13380 ismgmn0 13386 igsumvalx 13417 gsumfzval 13419 gsumval2 13425 prdssgrpd 13443 ress0g 13471 prdsidlem 13475 prdsmndd 13476 prds0g 13477 ismhm 13489 mhmex 13490 0mhm 13514 prdsgrpd 13637 prdsinvgd 13638 qusgrp2 13645 mulgval 13654 mulgfng 13656 mulg1 13661 mulgnnp1 13662 mulgnndir 13683 issubg2m 13721 1nsgtrivd 13751 eqgval 13755 eqgen 13759 rngpropd 13913 qusrng 13916 issrg 13923 ringidss 13987 ringpropd 13996 qusring2 14024 dvdsrvald 14051 dvdsrd 14052 isunitd 14064 invrfvald 14080 dvrfvald 14091 rdivmuldivd 14102 invrpropdg 14107 isrim0 14119 rhmunitinv 14136 subrgintm 14201 rrgmex 14219 aprval 14240 lssmex 14313 islss3 14337 sraval 14395 sralemg 14396 srascag 14400 sravscag 14401 sraipg 14402 sraex 14404 lidlmex 14433 lidlrsppropdg 14453 2idlmex 14459 qusrhm 14486 zrhval 14575 psrval 14624 psrbasg 14632 psrplusgg 14636 psraddcl 14638 psr0cl 14639 psr0lid 14640 psrnegcl 14641 psrlinv 14642 psrgrp 14643 psr1clfi 14646 mplsubgfilemcl 14657 istopon 14681 istps 14700 tgclb 14733 restbasg 14836 restco 14842 lmfval 14860 cnfval 14862 cnpfval 14863 cnpval 14866 txcnp 14939 txrest 14944 ismet2 15022 xmetpsmet 15037 mopnval 15110 comet 15167 reldvg 15347 dvmptclx 15386 lgseisenlem2 15744 1vgrex 15815 |
| Copyright terms: Public domain | W3C validator |