Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elexd | GIF version |
Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
elexd | ⊢ (𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | elex 2723 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2128 Vcvv 2712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-v 2714 |
This theorem is referenced by: ifexd 4442 dmmptd 5297 tfr1onlemsucfn 6281 tfrcllemsucfn 6294 frecrdg 6349 unsnfidcel 6858 fnfi 6874 caseinl 7025 caseinr 7026 omniwomnimkv 7093 acfun 7125 seq3val 10339 seqvalcd 10340 hashennn 10636 lcmval 11920 hashdvds 12073 ennnfonelemp1 12107 isstruct2r 12161 strnfvnd 12170 strfvssn 12172 strslfv2d 12192 setsslid 12200 ressid2 12209 ressval2 12210 istopon 12371 istps 12390 tgclb 12425 restbasg 12528 restco 12534 lmfval 12552 cnfval 12554 cnpfval 12555 cnpval 12558 txcnp 12631 txrest 12636 ismet2 12714 xmetpsmet 12729 mopnval 12802 comet 12859 reldvg 13008 dvmptclx 13040 |
Copyright terms: Public domain | W3C validator |