| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexd | GIF version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| elexd | ⊢ (𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | elex 2782 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 Vcvv 2771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: ifexd 4529 dmmptd 5400 tfr1onlemsucfn 6416 tfrcllemsucfn 6429 frecrdg 6484 unsnfidcel 7000 fnfi 7020 caseinl 7175 caseinr 7176 omniwomnimkv 7251 nninfdcinf 7255 acfun 7301 seq3val 10586 seqvalcd 10587 seqf1oglem2 10646 seqf1og 10647 hashennn 10906 wrdexg 10980 lcmval 12304 hashdvds 12462 ennnfonelemp1 12696 isstruct2r 12762 strnfvnd 12771 strfvssn 12773 strslfv2d 12794 setsslid 12802 basmex 12810 basmexd 12811 ressbas2d 12819 ressval3d 12823 prdsex 13019 prdsval 13023 prdsbaslemss 13024 imasival 13056 imasbas 13057 imasplusg 13058 imasmulr 13059 imasaddfn 13067 imasaddval 13068 imasaddf 13069 imasmulfn 13070 imasmulval 13071 imasmulf 13072 qusval 13073 qusaddflemg 13084 qusaddval 13085 qusaddf 13086 qusmulval 13087 qusmulf 13088 xpsfrnel 13094 xpsval 13102 ismgmn0 13108 igsumvalx 13139 gsumfzval 13141 gsumval2 13147 prdssgrpd 13165 ress0g 13193 prdsidlem 13197 prdsmndd 13198 prds0g 13199 ismhm 13211 mhmex 13212 0mhm 13236 prdsgrpd 13359 prdsinvgd 13360 qusgrp2 13367 mulgval 13376 mulgfng 13378 mulg1 13383 mulgnnp1 13384 mulgnndir 13405 issubg2m 13443 1nsgtrivd 13473 eqgval 13477 eqgen 13481 rngpropd 13635 qusrng 13638 issrg 13645 ringidss 13709 ringpropd 13718 qusring2 13746 dvdsrvald 13773 dvdsrd 13774 isunitd 13786 invrfvald 13802 dvrfvald 13813 rdivmuldivd 13824 invrpropdg 13829 isrim0 13841 rhmunitinv 13858 subrgintm 13923 rrgmex 13941 aprval 13962 lssmex 14035 islss3 14059 sraval 14117 sralemg 14118 srascag 14122 sravscag 14123 sraipg 14124 sraex 14126 lidlmex 14155 lidlrsppropdg 14175 2idlmex 14181 qusrhm 14208 zrhval 14297 psrval 14346 psrbasg 14354 psrplusgg 14358 psraddcl 14360 psr0cl 14361 psr0lid 14362 psrnegcl 14363 psrlinv 14364 psrgrp 14365 psr1clfi 14368 mplsubgfilemcl 14379 istopon 14403 istps 14422 tgclb 14455 restbasg 14558 restco 14564 lmfval 14582 cnfval 14584 cnpfval 14585 cnpval 14588 txcnp 14661 txrest 14666 ismet2 14744 xmetpsmet 14759 mopnval 14832 comet 14889 reldvg 15069 dvmptclx 15108 lgseisenlem2 15466 |
| Copyright terms: Public domain | W3C validator |