| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexd | GIF version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| elexd | ⊢ (𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | elex 2782 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 Vcvv 2771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: ifexd 4530 dmmptd 5405 tfr1onlemsucfn 6425 tfrcllemsucfn 6438 frecrdg 6493 unsnfidcel 7017 fnfi 7037 caseinl 7192 caseinr 7193 omniwomnimkv 7268 nninfdcinf 7272 acfun 7318 seq3val 10603 seqvalcd 10604 seqf1oglem2 10663 seqf1og 10664 hashennn 10923 wrdexg 11003 lcmval 12327 hashdvds 12485 ennnfonelemp1 12719 isstruct2r 12785 strnfvnd 12794 strfvssn 12796 strslfv2d 12817 setsslid 12825 basmex 12833 basmexd 12834 ressbas2d 12842 ressval3d 12846 prdsex 13043 prdsval 13047 prdsbaslemss 13048 imasival 13080 imasbas 13081 imasplusg 13082 imasmulr 13083 imasaddfn 13091 imasaddval 13092 imasaddf 13093 imasmulfn 13094 imasmulval 13095 imasmulf 13096 qusval 13097 qusaddflemg 13108 qusaddval 13109 qusaddf 13110 qusmulval 13111 qusmulf 13112 xpsfrnel 13118 xpsval 13126 ismgmn0 13132 igsumvalx 13163 gsumfzval 13165 gsumval2 13171 prdssgrpd 13189 ress0g 13217 prdsidlem 13221 prdsmndd 13222 prds0g 13223 ismhm 13235 mhmex 13236 0mhm 13260 prdsgrpd 13383 prdsinvgd 13384 qusgrp2 13391 mulgval 13400 mulgfng 13402 mulg1 13407 mulgnnp1 13408 mulgnndir 13429 issubg2m 13467 1nsgtrivd 13497 eqgval 13501 eqgen 13505 rngpropd 13659 qusrng 13662 issrg 13669 ringidss 13733 ringpropd 13742 qusring2 13770 dvdsrvald 13797 dvdsrd 13798 isunitd 13810 invrfvald 13826 dvrfvald 13837 rdivmuldivd 13848 invrpropdg 13853 isrim0 13865 rhmunitinv 13882 subrgintm 13947 rrgmex 13965 aprval 13986 lssmex 14059 islss3 14083 sraval 14141 sralemg 14142 srascag 14146 sravscag 14147 sraipg 14148 sraex 14150 lidlmex 14179 lidlrsppropdg 14199 2idlmex 14205 qusrhm 14232 zrhval 14321 psrval 14370 psrbasg 14378 psrplusgg 14382 psraddcl 14384 psr0cl 14385 psr0lid 14386 psrnegcl 14387 psrlinv 14388 psrgrp 14389 psr1clfi 14392 mplsubgfilemcl 14403 istopon 14427 istps 14446 tgclb 14479 restbasg 14582 restco 14588 lmfval 14606 cnfval 14608 cnpfval 14609 cnpval 14612 txcnp 14685 txrest 14690 ismet2 14768 xmetpsmet 14783 mopnval 14856 comet 14913 reldvg 15093 dvmptclx 15132 lgseisenlem2 15490 1vgrex 15559 |
| Copyright terms: Public domain | W3C validator |