| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexd | GIF version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| elexd | ⊢ (𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | elex 2785 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: ifexd 4539 dmmptd 5416 tfr1onlemsucfn 6439 tfrcllemsucfn 6452 frecrdg 6507 unsnfidcel 7033 fnfi 7053 caseinl 7208 caseinr 7209 omniwomnimkv 7284 nninfdcinf 7288 acfun 7335 seq3val 10627 seqvalcd 10628 seqf1oglem2 10687 seqf1og 10688 hashennn 10947 wrdexg 11027 lswex 11067 swrdspsleq 11143 cats1un 11197 lcmval 12460 hashdvds 12618 ennnfonelemp1 12852 isstruct2r 12918 strnfvnd 12927 strfvssn 12929 strslfv2d 12950 setsslid 12958 basmex 12966 basmexd 12967 ressbas2d 12975 ressval3d 12979 prdsex 13176 prdsval 13180 prdsbaslemss 13181 imasival 13213 imasbas 13214 imasplusg 13215 imasmulr 13216 imasaddfn 13224 imasaddval 13225 imasaddf 13226 imasmulfn 13227 imasmulval 13228 imasmulf 13229 qusval 13230 qusaddflemg 13241 qusaddval 13242 qusaddf 13243 qusmulval 13244 qusmulf 13245 xpsfrnel 13251 xpsval 13259 ismgmn0 13265 igsumvalx 13296 gsumfzval 13298 gsumval2 13304 prdssgrpd 13322 ress0g 13350 prdsidlem 13354 prdsmndd 13355 prds0g 13356 ismhm 13368 mhmex 13369 0mhm 13393 prdsgrpd 13516 prdsinvgd 13517 qusgrp2 13524 mulgval 13533 mulgfng 13535 mulg1 13540 mulgnnp1 13541 mulgnndir 13562 issubg2m 13600 1nsgtrivd 13630 eqgval 13634 eqgen 13638 rngpropd 13792 qusrng 13795 issrg 13802 ringidss 13866 ringpropd 13875 qusring2 13903 dvdsrvald 13930 dvdsrd 13931 isunitd 13943 invrfvald 13959 dvrfvald 13970 rdivmuldivd 13981 invrpropdg 13986 isrim0 13998 rhmunitinv 14015 subrgintm 14080 rrgmex 14098 aprval 14119 lssmex 14192 islss3 14216 sraval 14274 sralemg 14275 srascag 14279 sravscag 14280 sraipg 14281 sraex 14283 lidlmex 14312 lidlrsppropdg 14332 2idlmex 14338 qusrhm 14365 zrhval 14454 psrval 14503 psrbasg 14511 psrplusgg 14515 psraddcl 14517 psr0cl 14518 psr0lid 14519 psrnegcl 14520 psrlinv 14521 psrgrp 14522 psr1clfi 14525 mplsubgfilemcl 14536 istopon 14560 istps 14579 tgclb 14612 restbasg 14715 restco 14721 lmfval 14739 cnfval 14741 cnpfval 14742 cnpval 14745 txcnp 14818 txrest 14823 ismet2 14901 xmetpsmet 14916 mopnval 14989 comet 15046 reldvg 15226 dvmptclx 15265 lgseisenlem2 15623 1vgrex 15694 |
| Copyright terms: Public domain | W3C validator |