| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexd | GIF version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| elexd | ⊢ (𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | elex 2774 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: ifexd 4520 dmmptd 5391 tfr1onlemsucfn 6407 tfrcllemsucfn 6420 frecrdg 6475 unsnfidcel 6991 fnfi 7011 caseinl 7166 caseinr 7167 omniwomnimkv 7242 nninfdcinf 7246 acfun 7292 seq3val 10571 seqvalcd 10572 seqf1oglem2 10631 seqf1og 10632 hashennn 10891 wrdexg 10965 lcmval 12258 hashdvds 12416 ennnfonelemp1 12650 isstruct2r 12716 strnfvnd 12725 strfvssn 12727 strslfv2d 12748 setsslid 12756 basmex 12764 basmexd 12765 ressbas2d 12773 ressval3d 12777 prdsex 12973 prdsval 12977 prdsbaslemss 12978 imasival 13010 imasbas 13011 imasplusg 13012 imasmulr 13013 imasaddfn 13021 imasaddval 13022 imasaddf 13023 imasmulfn 13024 imasmulval 13025 imasmulf 13026 qusval 13027 qusaddflemg 13038 qusaddval 13039 qusaddf 13040 qusmulval 13041 qusmulf 13042 xpsfrnel 13048 xpsval 13056 ismgmn0 13062 igsumvalx 13093 gsumfzval 13095 gsumval2 13101 prdssgrpd 13119 ress0g 13147 prdsidlem 13151 prdsmndd 13152 prds0g 13153 ismhm 13165 mhmex 13166 0mhm 13190 prdsgrpd 13313 prdsinvgd 13314 qusgrp2 13321 mulgval 13330 mulgfng 13332 mulg1 13337 mulgnnp1 13338 mulgnndir 13359 issubg2m 13397 1nsgtrivd 13427 eqgval 13431 eqgen 13435 rngpropd 13589 qusrng 13592 issrg 13599 ringidss 13663 ringpropd 13672 qusring2 13700 dvdsrvald 13727 dvdsrd 13728 isunitd 13740 invrfvald 13756 dvrfvald 13767 rdivmuldivd 13778 invrpropdg 13783 isrim0 13795 rhmunitinv 13812 subrgintm 13877 rrgmex 13895 aprval 13916 lssmex 13989 islss3 14013 sraval 14071 sralemg 14072 srascag 14076 sravscag 14077 sraipg 14078 sraex 14080 lidlmex 14109 lidlrsppropdg 14129 2idlmex 14135 qusrhm 14162 zrhval 14251 psrval 14300 psrbasg 14308 psrplusgg 14312 psraddcl 14314 psr0cl 14315 psr0lid 14316 psrnegcl 14317 psrlinv 14318 psrgrp 14319 psr1clfi 14322 mplsubgfilemcl 14333 istopon 14357 istps 14376 tgclb 14409 restbasg 14512 restco 14518 lmfval 14536 cnfval 14538 cnpfval 14539 cnpval 14542 txcnp 14615 txrest 14620 ismet2 14698 xmetpsmet 14713 mopnval 14786 comet 14843 reldvg 15023 dvmptclx 15062 lgseisenlem2 15420 |
| Copyright terms: Public domain | W3C validator |