Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elexd | GIF version |
Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
elexd | ⊢ (𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | elex 2737 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: ifexd 4462 dmmptd 5318 tfr1onlemsucfn 6308 tfrcllemsucfn 6321 frecrdg 6376 unsnfidcel 6886 fnfi 6902 caseinl 7056 caseinr 7057 omniwomnimkv 7131 acfun 7163 seq3val 10393 seqvalcd 10394 hashennn 10693 lcmval 11995 hashdvds 12153 ennnfonelemp1 12339 isstruct2r 12405 strnfvnd 12414 strfvssn 12416 strslfv2d 12436 setsslid 12444 basmex 12452 ressid2 12454 ressval2 12455 ismgmn0 12589 istopon 12651 istps 12670 tgclb 12705 restbasg 12808 restco 12814 lmfval 12832 cnfval 12834 cnpfval 12835 cnpval 12838 txcnp 12911 txrest 12916 ismet2 12994 xmetpsmet 13009 mopnval 13082 comet 13139 reldvg 13288 dvmptclx 13320 |
Copyright terms: Public domain | W3C validator |