ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subcmnd GIF version

Theorem subcmnd 13406
Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
subcmnd.h (𝜑𝐻 = (𝐺s 𝑆))
subcmnd.g (𝜑𝐺 ∈ CMnd)
subcmnd.m (𝜑𝐻 ∈ Mnd)
subcmnd.s (𝜑𝑆𝑉)
Assertion
Ref Expression
subcmnd (𝜑𝐻 ∈ CMnd)

Proof of Theorem subcmnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2194 . 2 (𝜑 → (Base‘𝐻) = (Base‘𝐻))
2 subcmnd.h . . 3 (𝜑𝐻 = (𝐺s 𝑆))
3 eqidd 2194 . . 3 (𝜑 → (+g𝐺) = (+g𝐺))
4 subcmnd.s . . 3 (𝜑𝑆𝑉)
5 subcmnd.g . . 3 (𝜑𝐺 ∈ CMnd)
62, 3, 4, 5ressplusgd 12749 . 2 (𝜑 → (+g𝐺) = (+g𝐻))
7 subcmnd.m . 2 (𝜑𝐻 ∈ Mnd)
853ad2ant1 1020 . . 3 ((𝜑𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝐺 ∈ CMnd)
9 eqidd 2194 . . . . . 6 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
102, 9, 5, 4ressbasssd 12690 . . . . 5 (𝜑 → (Base‘𝐻) ⊆ (Base‘𝐺))
1110sselda 3180 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐻)) → 𝑥 ∈ (Base‘𝐺))
12113adant3 1019 . . 3 ((𝜑𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝑥 ∈ (Base‘𝐺))
1310sselda 3180 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐻)) → 𝑦 ∈ (Base‘𝐺))
14133adant2 1018 . . 3 ((𝜑𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝑦 ∈ (Base‘𝐺))
15 eqid 2193 . . . 4 (Base‘𝐺) = (Base‘𝐺)
16 eqid 2193 . . . 4 (+g𝐺) = (+g𝐺)
1715, 16cmncom 13375 . . 3 ((𝐺 ∈ CMnd ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
188, 12, 14, 17syl3anc 1249 . 2 ((𝜑𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
191, 6, 7, 18iscmnd 13371 1 (𝜑𝐻 ∈ CMnd)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  Basecbs 12621  s cress 12622  +gcplusg 12698  Mndcmnd 13000  CMndccmn 13357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-cmn 13359
This theorem is referenced by:  unitabl  13616  subrgcrng  13724
  Copyright terms: Public domain W3C validator