| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcmnd | GIF version | ||
| Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| subcmnd.h | ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝑆)) |
| subcmnd.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| subcmnd.m | ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| subcmnd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| subcmnd | ⊢ (𝜑 → 𝐻 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2207 | . 2 ⊢ (𝜑 → (Base‘𝐻) = (Base‘𝐻)) | |
| 2 | subcmnd.h | . . 3 ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝑆)) | |
| 3 | eqidd 2207 | . . 3 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐺)) | |
| 4 | subcmnd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 5 | subcmnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 6 | 2, 3, 4, 5 | ressplusgd 13011 | . 2 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
| 7 | subcmnd.m | . 2 ⊢ (𝜑 → 𝐻 ∈ Mnd) | |
| 8 | 5 | 3ad2ant1 1021 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝐺 ∈ CMnd) |
| 9 | eqidd 2207 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) | |
| 10 | 2, 9, 5, 4 | ressbasssd 12951 | . . . . 5 ⊢ (𝜑 → (Base‘𝐻) ⊆ (Base‘𝐺)) |
| 11 | 10 | sselda 3195 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐻)) → 𝑥 ∈ (Base‘𝐺)) |
| 12 | 11 | 3adant3 1020 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝑥 ∈ (Base‘𝐺)) |
| 13 | 10 | sselda 3195 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐻)) → 𝑦 ∈ (Base‘𝐺)) |
| 14 | 13 | 3adant2 1019 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝑦 ∈ (Base‘𝐺)) |
| 15 | eqid 2206 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 16 | eqid 2206 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 15, 16 | cmncom 13688 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 18 | 8, 12, 14, 17 | syl3anc 1250 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 19 | 1, 6, 7, 18 | iscmnd 13684 | 1 ⊢ (𝜑 → 𝐻 ∈ CMnd) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5277 (class class class)co 5954 Basecbs 12882 ↾s cress 12883 +gcplusg 12959 Mndcmnd 13298 CMndccmn 13670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-ltirr 8050 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-iota 5238 df-fun 5279 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-inn 9050 df-2 9108 df-ndx 12885 df-slot 12886 df-base 12888 df-sets 12889 df-iress 12890 df-plusg 12972 df-cmn 13672 |
| This theorem is referenced by: unitabl 13929 subrgcrng 14037 |
| Copyright terms: Public domain | W3C validator |