![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subcmnd | GIF version |
Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
subcmnd.h | ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝑆)) |
subcmnd.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
subcmnd.m | ⊢ (𝜑 → 𝐻 ∈ Mnd) |
subcmnd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
Ref | Expression |
---|---|
subcmnd | ⊢ (𝜑 → 𝐻 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2194 | . 2 ⊢ (𝜑 → (Base‘𝐻) = (Base‘𝐻)) | |
2 | subcmnd.h | . . 3 ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝑆)) | |
3 | eqidd 2194 | . . 3 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐺)) | |
4 | subcmnd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
5 | subcmnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
6 | 2, 3, 4, 5 | ressplusgd 12749 | . 2 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
7 | subcmnd.m | . 2 ⊢ (𝜑 → 𝐻 ∈ Mnd) | |
8 | 5 | 3ad2ant1 1020 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝐺 ∈ CMnd) |
9 | eqidd 2194 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) | |
10 | 2, 9, 5, 4 | ressbasssd 12690 | . . . . 5 ⊢ (𝜑 → (Base‘𝐻) ⊆ (Base‘𝐺)) |
11 | 10 | sselda 3180 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐻)) → 𝑥 ∈ (Base‘𝐺)) |
12 | 11 | 3adant3 1019 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝑥 ∈ (Base‘𝐺)) |
13 | 10 | sselda 3180 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐻)) → 𝑦 ∈ (Base‘𝐺)) |
14 | 13 | 3adant2 1018 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝑦 ∈ (Base‘𝐺)) |
15 | eqid 2193 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
16 | eqid 2193 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
17 | 15, 16 | cmncom 13375 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
18 | 8, 12, 14, 17 | syl3anc 1249 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
19 | 1, 6, 7, 18 | iscmnd 13371 | 1 ⊢ (𝜑 → 𝐻 ∈ CMnd) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 ↾s cress 12622 +gcplusg 12698 Mndcmnd 13000 CMndccmn 13357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-cmn 13359 |
This theorem is referenced by: unitabl 13616 subrgcrng 13724 |
Copyright terms: Public domain | W3C validator |