| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > subcmnd | GIF version | ||
| Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| subcmnd.h | ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝑆)) | 
| subcmnd.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) | 
| subcmnd.m | ⊢ (𝜑 → 𝐻 ∈ Mnd) | 
| subcmnd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) | 
| Ref | Expression | 
|---|---|
| subcmnd | ⊢ (𝜑 → 𝐻 ∈ CMnd) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqidd 2197 | . 2 ⊢ (𝜑 → (Base‘𝐻) = (Base‘𝐻)) | |
| 2 | subcmnd.h | . . 3 ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝑆)) | |
| 3 | eqidd 2197 | . . 3 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐺)) | |
| 4 | subcmnd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 5 | subcmnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 6 | 2, 3, 4, 5 | ressplusgd 12806 | . 2 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) | 
| 7 | subcmnd.m | . 2 ⊢ (𝜑 → 𝐻 ∈ Mnd) | |
| 8 | 5 | 3ad2ant1 1020 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝐺 ∈ CMnd) | 
| 9 | eqidd 2197 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) | |
| 10 | 2, 9, 5, 4 | ressbasssd 12747 | . . . . 5 ⊢ (𝜑 → (Base‘𝐻) ⊆ (Base‘𝐺)) | 
| 11 | 10 | sselda 3183 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐻)) → 𝑥 ∈ (Base‘𝐺)) | 
| 12 | 11 | 3adant3 1019 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝑥 ∈ (Base‘𝐺)) | 
| 13 | 10 | sselda 3183 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐻)) → 𝑦 ∈ (Base‘𝐺)) | 
| 14 | 13 | 3adant2 1018 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝑦 ∈ (Base‘𝐺)) | 
| 15 | eqid 2196 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 16 | eqid 2196 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 15, 16 | cmncom 13432 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) | 
| 18 | 8, 12, 14, 17 | syl3anc 1249 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) | 
| 19 | 1, 6, 7, 18 | iscmnd 13428 | 1 ⊢ (𝜑 → 𝐻 ∈ CMnd) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 ↾s cress 12679 +gcplusg 12755 Mndcmnd 13057 CMndccmn 13414 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-cmn 13416 | 
| This theorem is referenced by: unitabl 13673 subrgcrng 13781 | 
| Copyright terms: Public domain | W3C validator |