ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem1p1 GIF version

Theorem pitonnlem1p1 7930
Description: Lemma for pitonn 7932. Simplifying an expression involving signed reals. (Contributed by Jim Kingdon, 26-Apr-2020.)
Assertion
Ref Expression
pitonnlem1p1 (𝐴P → [⟨(𝐴 +P (1P +P 1P)), (1P +P 1P)⟩] ~R = [⟨(𝐴 +P 1P), 1P⟩] ~R )

Proof of Theorem pitonnlem1p1
StepHypRef Expression
1 1pr 7638 . . . . . 6 1PP
2 addclpr 7621 . . . . . 6 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
31, 1, 2mp2an 426 . . . . 5 (1P +P 1P) ∈ P
4 addcomprg 7662 . . . . 5 ((𝐴P ∧ (1P +P 1P) ∈ P) → (𝐴 +P (1P +P 1P)) = ((1P +P 1P) +P 𝐴))
53, 4mpan2 425 . . . 4 (𝐴P → (𝐴 +P (1P +P 1P)) = ((1P +P 1P) +P 𝐴))
65oveq1d 5940 . . 3 (𝐴P → ((𝐴 +P (1P +P 1P)) +P 1P) = (((1P +P 1P) +P 𝐴) +P 1P))
7 addassprg 7663 . . . 4 (((1P +P 1P) ∈ P𝐴P ∧ 1PP) → (((1P +P 1P) +P 𝐴) +P 1P) = ((1P +P 1P) +P (𝐴 +P 1P)))
83, 1, 7mp3an13 1339 . . 3 (𝐴P → (((1P +P 1P) +P 𝐴) +P 1P) = ((1P +P 1P) +P (𝐴 +P 1P)))
96, 8eqtrd 2229 . 2 (𝐴P → ((𝐴 +P (1P +P 1P)) +P 1P) = ((1P +P 1P) +P (𝐴 +P 1P)))
10 addclpr 7621 . . . 4 ((𝐴P ∧ (1P +P 1P) ∈ P) → (𝐴 +P (1P +P 1P)) ∈ P)
113, 10mpan2 425 . . 3 (𝐴P → (𝐴 +P (1P +P 1P)) ∈ P)
123a1i 9 . . 3 (𝐴P → (1P +P 1P) ∈ P)
13 addclpr 7621 . . . 4 ((𝐴P ∧ 1PP) → (𝐴 +P 1P) ∈ P)
141, 13mpan2 425 . . 3 (𝐴P → (𝐴 +P 1P) ∈ P)
151a1i 9 . . 3 (𝐴P → 1PP)
16 enreceq 7820 . . 3 ((((𝐴 +P (1P +P 1P)) ∈ P ∧ (1P +P 1P) ∈ P) ∧ ((𝐴 +P 1P) ∈ P ∧ 1PP)) → ([⟨(𝐴 +P (1P +P 1P)), (1P +P 1P)⟩] ~R = [⟨(𝐴 +P 1P), 1P⟩] ~R ↔ ((𝐴 +P (1P +P 1P)) +P 1P) = ((1P +P 1P) +P (𝐴 +P 1P))))
1711, 12, 14, 15, 16syl22anc 1250 . 2 (𝐴P → ([⟨(𝐴 +P (1P +P 1P)), (1P +P 1P)⟩] ~R = [⟨(𝐴 +P 1P), 1P⟩] ~R ↔ ((𝐴 +P (1P +P 1P)) +P 1P) = ((1P +P 1P) +P (𝐴 +P 1P))))
189, 17mpbird 167 1 (𝐴P → [⟨(𝐴 +P (1P +P 1P)), (1P +P 1P)⟩] ~R = [⟨(𝐴 +P 1P), 1P⟩] ~R )
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  cop 3626  (class class class)co 5925  [cec 6599  Pcnp 7375  1Pc1p 7376   +P cpp 7377   ~R cer 7380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-enr 7810
This theorem is referenced by:  pitonnlem2  7931
  Copyright terms: Public domain W3C validator