| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pitonnlem1p1 | GIF version | ||
| Description: Lemma for pitonn 8035. Simplifying an expression involving signed reals. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| Ref | Expression |
|---|---|
| pitonnlem1p1 | ⊢ (𝐴 ∈ P → [〈(𝐴 +P (1P +P 1P)), (1P +P 1P)〉] ~R = [〈(𝐴 +P 1P), 1P〉] ~R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 7741 | . . . . . 6 ⊢ 1P ∈ P | |
| 2 | addclpr 7724 | . . . . . 6 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 3 | 1, 1, 2 | mp2an 426 | . . . . 5 ⊢ (1P +P 1P) ∈ P |
| 4 | addcomprg 7765 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ (1P +P 1P) ∈ P) → (𝐴 +P (1P +P 1P)) = ((1P +P 1P) +P 𝐴)) | |
| 5 | 3, 4 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ P → (𝐴 +P (1P +P 1P)) = ((1P +P 1P) +P 𝐴)) |
| 6 | 5 | oveq1d 6016 | . . 3 ⊢ (𝐴 ∈ P → ((𝐴 +P (1P +P 1P)) +P 1P) = (((1P +P 1P) +P 𝐴) +P 1P)) |
| 7 | addassprg 7766 | . . . 4 ⊢ (((1P +P 1P) ∈ P ∧ 𝐴 ∈ P ∧ 1P ∈ P) → (((1P +P 1P) +P 𝐴) +P 1P) = ((1P +P 1P) +P (𝐴 +P 1P))) | |
| 8 | 3, 1, 7 | mp3an13 1362 | . . 3 ⊢ (𝐴 ∈ P → (((1P +P 1P) +P 𝐴) +P 1P) = ((1P +P 1P) +P (𝐴 +P 1P))) |
| 9 | 6, 8 | eqtrd 2262 | . 2 ⊢ (𝐴 ∈ P → ((𝐴 +P (1P +P 1P)) +P 1P) = ((1P +P 1P) +P (𝐴 +P 1P))) |
| 10 | addclpr 7724 | . . . 4 ⊢ ((𝐴 ∈ P ∧ (1P +P 1P) ∈ P) → (𝐴 +P (1P +P 1P)) ∈ P) | |
| 11 | 3, 10 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ P → (𝐴 +P (1P +P 1P)) ∈ P) |
| 12 | 3 | a1i 9 | . . 3 ⊢ (𝐴 ∈ P → (1P +P 1P) ∈ P) |
| 13 | addclpr 7724 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → (𝐴 +P 1P) ∈ P) | |
| 14 | 1, 13 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ P → (𝐴 +P 1P) ∈ P) |
| 15 | 1 | a1i 9 | . . 3 ⊢ (𝐴 ∈ P → 1P ∈ P) |
| 16 | enreceq 7923 | . . 3 ⊢ ((((𝐴 +P (1P +P 1P)) ∈ P ∧ (1P +P 1P) ∈ P) ∧ ((𝐴 +P 1P) ∈ P ∧ 1P ∈ P)) → ([〈(𝐴 +P (1P +P 1P)), (1P +P 1P)〉] ~R = [〈(𝐴 +P 1P), 1P〉] ~R ↔ ((𝐴 +P (1P +P 1P)) +P 1P) = ((1P +P 1P) +P (𝐴 +P 1P)))) | |
| 17 | 11, 12, 14, 15, 16 | syl22anc 1272 | . 2 ⊢ (𝐴 ∈ P → ([〈(𝐴 +P (1P +P 1P)), (1P +P 1P)〉] ~R = [〈(𝐴 +P 1P), 1P〉] ~R ↔ ((𝐴 +P (1P +P 1P)) +P 1P) = ((1P +P 1P) +P (𝐴 +P 1P)))) |
| 18 | 9, 17 | mpbird 167 | 1 ⊢ (𝐴 ∈ P → [〈(𝐴 +P (1P +P 1P)), (1P +P 1P)〉] ~R = [〈(𝐴 +P 1P), 1P〉] ~R ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 〈cop 3669 (class class class)co 6001 [cec 6678 Pcnp 7478 1Pc1p 7479 +P cpp 7480 ~R cer 7483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-i1p 7654 df-iplp 7655 df-enr 7913 |
| This theorem is referenced by: pitonnlem2 8034 |
| Copyright terms: Public domain | W3C validator |