ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosq14gt0 GIF version

Theorem cosq14gt0 15389
Description: The cosine of a number strictly between -π / 2 and π / 2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
cosq14gt0 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴))

Proof of Theorem cosq14gt0
StepHypRef Expression
1 halfpire 15349 . . . . 5 (π / 2) ∈ ℝ
2 elioore 10064 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ)
3 resubcl 8366 . . . . 5 (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π / 2) − 𝐴) ∈ ℝ)
41, 2, 3sylancr 414 . . . 4 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) ∈ ℝ)
5 neghalfpirx 15351 . . . . . . 7 -(π / 2) ∈ ℝ*
61rexri 8160 . . . . . . 7 (π / 2) ∈ ℝ*
7 elioo2 10073 . . . . . . 7 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (π / 2))))
85, 6, 7mp2an 426 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (π / 2)))
98simp3bi 1017 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 < (π / 2))
10 posdif 8558 . . . . . 6 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 < (π / 2) ↔ 0 < ((π / 2) − 𝐴)))
112, 1, 10sylancl 413 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < (π / 2) ↔ 0 < ((π / 2) − 𝐴)))
129, 11mpbid 147 . . . 4 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < ((π / 2) − 𝐴))
13 picn 15344 . . . . . . . 8 π ∈ ℂ
14 halfcl 9293 . . . . . . . 8 (π ∈ ℂ → (π / 2) ∈ ℂ)
1513, 14ax-mp 5 . . . . . . 7 (π / 2) ∈ ℂ
1615negcli 8370 . . . . . . 7 -(π / 2) ∈ ℂ
1713, 15negsubi 8380 . . . . . . . 8 (π + -(π / 2)) = (π − (π / 2))
18 pidiv2halves 15352 . . . . . . . . 9 ((π / 2) + (π / 2)) = π
1913, 15, 15, 18subaddrii 8391 . . . . . . . 8 (π − (π / 2)) = (π / 2)
2017, 19eqtri 2227 . . . . . . 7 (π + -(π / 2)) = (π / 2)
2115, 13, 16, 20subaddrii 8391 . . . . . 6 ((π / 2) − π) = -(π / 2)
228simp2bi 1016 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → -(π / 2) < 𝐴)
2321, 22eqbrtrid 4089 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − π) < 𝐴)
24 pire 15343 . . . . . . 7 π ∈ ℝ
25 ltsub23 8545 . . . . . . 7 (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ π ∈ ℝ) → (((π / 2) − 𝐴) < π ↔ ((π / 2) − π) < 𝐴))
261, 24, 25mp3an13 1341 . . . . . 6 (𝐴 ∈ ℝ → (((π / 2) − 𝐴) < π ↔ ((π / 2) − π) < 𝐴))
272, 26syl 14 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (((π / 2) − 𝐴) < π ↔ ((π / 2) − π) < 𝐴))
2823, 27mpbird 167 . . . 4 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) < π)
29 0xr 8149 . . . . 5 0 ∈ ℝ*
3024rexri 8160 . . . . 5 π ∈ ℝ*
31 elioo2 10073 . . . . 5 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (((π / 2) − 𝐴) ∈ (0(,)π) ↔ (((π / 2) − 𝐴) ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < π)))
3229, 30, 31mp2an 426 . . . 4 (((π / 2) − 𝐴) ∈ (0(,)π) ↔ (((π / 2) − 𝐴) ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < π))
334, 12, 28, 32syl3anbrc 1184 . . 3 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) ∈ (0(,)π))
34 sinq12gt0 15387 . . 3 (((π / 2) − 𝐴) ∈ (0(,)π) → 0 < (sin‘((π / 2) − 𝐴)))
3533, 34syl 14 . 2 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (sin‘((π / 2) − 𝐴)))
362recnd 8131 . . 3 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℂ)
37 sinhalfpim 15378 . . 3 (𝐴 ∈ ℂ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴))
3836, 37syl 14 . 2 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴))
3935, 38breqtrd 4080 1 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4054  cfv 5285  (class class class)co 5962  cc 7953  cr 7954  0cc0 7955   + caddc 7958  *cxr 8136   < clt 8137  cmin 8273  -cneg 8274   / cdiv 8775  2c2 9117  (,)cioo 10040  sincsin 12040  cosccos 12041  πcpi 12043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075  ax-pre-suploc 8076  ax-addf 8077  ax-mulf 8078
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-disj 4031  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-isom 5294  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-of 6176  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-frec 6495  df-1o 6520  df-oadd 6524  df-er 6638  df-map 6755  df-pm 6756  df-en 6846  df-dom 6847  df-fin 6848  df-sup 7107  df-inf 7108  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-7 9130  df-8 9131  df-9 9132  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-xneg 9924  df-xadd 9925  df-ioo 10044  df-ioc 10045  df-ico 10046  df-icc 10047  df-fz 10161  df-fzo 10295  df-seqfrec 10625  df-exp 10716  df-fac 10903  df-bc 10925  df-ihash 10953  df-shft 11211  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-clim 11675  df-sumdc 11750  df-ef 12044  df-sin 12046  df-cos 12047  df-pi 12049  df-rest 13158  df-topgen 13177  df-psmet 14390  df-xmet 14391  df-met 14392  df-bl 14393  df-mopn 14394  df-top 14555  df-topon 14568  df-bases 14600  df-ntr 14653  df-cn 14745  df-cnp 14746  df-tx 14810  df-cncf 15128  df-limced 15213  df-dvap 15214
This theorem is referenced by:  coseq0q4123  15391
  Copyright terms: Public domain W3C validator