ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosq14gt0 GIF version

Theorem cosq14gt0 13547
Description: The cosine of a number strictly between -π / 2 and π / 2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
cosq14gt0 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴))

Proof of Theorem cosq14gt0
StepHypRef Expression
1 halfpire 13507 . . . . 5 (π / 2) ∈ ℝ
2 elioore 9869 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ)
3 resubcl 8183 . . . . 5 (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π / 2) − 𝐴) ∈ ℝ)
41, 2, 3sylancr 412 . . . 4 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) ∈ ℝ)
5 neghalfpirx 13509 . . . . . . 7 -(π / 2) ∈ ℝ*
61rexri 7977 . . . . . . 7 (π / 2) ∈ ℝ*
7 elioo2 9878 . . . . . . 7 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (π / 2))))
85, 6, 7mp2an 424 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴𝐴 < (π / 2)))
98simp3bi 1009 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 < (π / 2))
10 posdif 8374 . . . . . 6 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 < (π / 2) ↔ 0 < ((π / 2) − 𝐴)))
112, 1, 10sylancl 411 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < (π / 2) ↔ 0 < ((π / 2) − 𝐴)))
129, 11mpbid 146 . . . 4 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < ((π / 2) − 𝐴))
13 picn 13502 . . . . . . . 8 π ∈ ℂ
14 halfcl 9104 . . . . . . . 8 (π ∈ ℂ → (π / 2) ∈ ℂ)
1513, 14ax-mp 5 . . . . . . 7 (π / 2) ∈ ℂ
1615negcli 8187 . . . . . . 7 -(π / 2) ∈ ℂ
1713, 15negsubi 8197 . . . . . . . 8 (π + -(π / 2)) = (π − (π / 2))
18 pidiv2halves 13510 . . . . . . . . 9 ((π / 2) + (π / 2)) = π
1913, 15, 15, 18subaddrii 8208 . . . . . . . 8 (π − (π / 2)) = (π / 2)
2017, 19eqtri 2191 . . . . . . 7 (π + -(π / 2)) = (π / 2)
2115, 13, 16, 20subaddrii 8208 . . . . . 6 ((π / 2) − π) = -(π / 2)
228simp2bi 1008 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → -(π / 2) < 𝐴)
2321, 22eqbrtrid 4024 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − π) < 𝐴)
24 pire 13501 . . . . . . 7 π ∈ ℝ
25 ltsub23 8361 . . . . . . 7 (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ π ∈ ℝ) → (((π / 2) − 𝐴) < π ↔ ((π / 2) − π) < 𝐴))
261, 24, 25mp3an13 1323 . . . . . 6 (𝐴 ∈ ℝ → (((π / 2) − 𝐴) < π ↔ ((π / 2) − π) < 𝐴))
272, 26syl 14 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (((π / 2) − 𝐴) < π ↔ ((π / 2) − π) < 𝐴))
2823, 27mpbird 166 . . . 4 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) < π)
29 0xr 7966 . . . . 5 0 ∈ ℝ*
3024rexri 7977 . . . . 5 π ∈ ℝ*
31 elioo2 9878 . . . . 5 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (((π / 2) − 𝐴) ∈ (0(,)π) ↔ (((π / 2) − 𝐴) ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < π)))
3229, 30, 31mp2an 424 . . . 4 (((π / 2) − 𝐴) ∈ (0(,)π) ↔ (((π / 2) − 𝐴) ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < π))
334, 12, 28, 32syl3anbrc 1176 . . 3 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) ∈ (0(,)π))
34 sinq12gt0 13545 . . 3 (((π / 2) − 𝐴) ∈ (0(,)π) → 0 < (sin‘((π / 2) − 𝐴)))
3533, 34syl 14 . 2 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (sin‘((π / 2) − 𝐴)))
362recnd 7948 . . 3 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℂ)
37 sinhalfpim 13536 . . 3 (𝐴 ∈ ℂ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴))
3836, 37syl 14 . 2 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴))
3935, 38breqtrd 4015 1 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 973   = wceq 1348  wcel 2141   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774   + caddc 7777  *cxr 7953   < clt 7954  cmin 8090  -cneg 8091   / cdiv 8589  2c2 8929  (,)cioo 9845  sincsin 11607  cosccos 11608  πcpi 11610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894  ax-pre-suploc 7895  ax-addf 7896  ax-mulf 7897
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-disj 3967  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-map 6628  df-pm 6629  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-ioo 9849  df-ioc 9850  df-ico 9851  df-icc 9852  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-bc 10682  df-ihash 10710  df-shft 10779  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611  df-sin 11613  df-cos 11614  df-pi 11616  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-cn 12982  df-cnp 12983  df-tx 13047  df-cncf 13352  df-limced 13419  df-dvap 13420
This theorem is referenced by:  coseq0q4123  13549
  Copyright terms: Public domain W3C validator