| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cosq14gt0 | GIF version | ||
| Description: The cosine of a number strictly between -π / 2 and π / 2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| Ref | Expression |
|---|---|
| cosq14gt0 | ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfpire 15349 | . . . . 5 ⊢ (π / 2) ∈ ℝ | |
| 2 | elioore 10064 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ) | |
| 3 | resubcl 8366 | . . . . 5 ⊢ (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π / 2) − 𝐴) ∈ ℝ) | |
| 4 | 1, 2, 3 | sylancr 414 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) ∈ ℝ) |
| 5 | neghalfpirx 15351 | . . . . . . 7 ⊢ -(π / 2) ∈ ℝ* | |
| 6 | 1 | rexri 8160 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ* |
| 7 | elioo2 10073 | . . . . . . 7 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴 ∧ 𝐴 < (π / 2)))) | |
| 8 | 5, 6, 7 | mp2an 426 | . . . . . 6 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴 ∧ 𝐴 < (π / 2))) |
| 9 | 8 | simp3bi 1017 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 < (π / 2)) |
| 10 | posdif 8558 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 < (π / 2) ↔ 0 < ((π / 2) − 𝐴))) | |
| 11 | 2, 1, 10 | sylancl 413 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < (π / 2) ↔ 0 < ((π / 2) − 𝐴))) |
| 12 | 9, 11 | mpbid 147 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < ((π / 2) − 𝐴)) |
| 13 | picn 15344 | . . . . . . . 8 ⊢ π ∈ ℂ | |
| 14 | halfcl 9293 | . . . . . . . 8 ⊢ (π ∈ ℂ → (π / 2) ∈ ℂ) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ (π / 2) ∈ ℂ |
| 16 | 15 | negcli 8370 | . . . . . . 7 ⊢ -(π / 2) ∈ ℂ |
| 17 | 13, 15 | negsubi 8380 | . . . . . . . 8 ⊢ (π + -(π / 2)) = (π − (π / 2)) |
| 18 | pidiv2halves 15352 | . . . . . . . . 9 ⊢ ((π / 2) + (π / 2)) = π | |
| 19 | 13, 15, 15, 18 | subaddrii 8391 | . . . . . . . 8 ⊢ (π − (π / 2)) = (π / 2) |
| 20 | 17, 19 | eqtri 2227 | . . . . . . 7 ⊢ (π + -(π / 2)) = (π / 2) |
| 21 | 15, 13, 16, 20 | subaddrii 8391 | . . . . . 6 ⊢ ((π / 2) − π) = -(π / 2) |
| 22 | 8 | simp2bi 1016 | . . . . . 6 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → -(π / 2) < 𝐴) |
| 23 | 21, 22 | eqbrtrid 4089 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − π) < 𝐴) |
| 24 | pire 15343 | . . . . . . 7 ⊢ π ∈ ℝ | |
| 25 | ltsub23 8545 | . . . . . . 7 ⊢ (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ π ∈ ℝ) → (((π / 2) − 𝐴) < π ↔ ((π / 2) − π) < 𝐴)) | |
| 26 | 1, 24, 25 | mp3an13 1341 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (((π / 2) − 𝐴) < π ↔ ((π / 2) − π) < 𝐴)) |
| 27 | 2, 26 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (((π / 2) − 𝐴) < π ↔ ((π / 2) − π) < 𝐴)) |
| 28 | 23, 27 | mpbird 167 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) < π) |
| 29 | 0xr 8149 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 30 | 24 | rexri 8160 | . . . . 5 ⊢ π ∈ ℝ* |
| 31 | elioo2 10073 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (((π / 2) − 𝐴) ∈ (0(,)π) ↔ (((π / 2) − 𝐴) ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < π))) | |
| 32 | 29, 30, 31 | mp2an 426 | . . . 4 ⊢ (((π / 2) − 𝐴) ∈ (0(,)π) ↔ (((π / 2) − 𝐴) ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < π)) |
| 33 | 4, 12, 28, 32 | syl3anbrc 1184 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) ∈ (0(,)π)) |
| 34 | sinq12gt0 15387 | . . 3 ⊢ (((π / 2) − 𝐴) ∈ (0(,)π) → 0 < (sin‘((π / 2) − 𝐴))) | |
| 35 | 33, 34 | syl 14 | . 2 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (sin‘((π / 2) − 𝐴))) |
| 36 | 2 | recnd 8131 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℂ) |
| 37 | sinhalfpim 15378 | . . 3 ⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴)) | |
| 38 | 36, 37 | syl 14 | . 2 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴)) |
| 39 | 35, 38 | breqtrd 4080 | 1 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 class class class wbr 4054 ‘cfv 5285 (class class class)co 5962 ℂcc 7953 ℝcr 7954 0cc0 7955 + caddc 7958 ℝ*cxr 8136 < clt 8137 − cmin 8273 -cneg 8274 / cdiv 8775 2c2 9117 (,)cioo 10040 sincsin 12040 cosccos 12041 πcpi 12043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 ax-pre-suploc 8076 ax-addf 8077 ax-mulf 8078 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-disj 4031 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-of 6176 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-frec 6495 df-1o 6520 df-oadd 6524 df-er 6638 df-map 6755 df-pm 6756 df-en 6846 df-dom 6847 df-fin 6848 df-sup 7107 df-inf 7108 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 df-9 9132 df-n0 9326 df-z 9403 df-uz 9679 df-q 9771 df-rp 9806 df-xneg 9924 df-xadd 9925 df-ioo 10044 df-ioc 10045 df-ico 10046 df-icc 10047 df-fz 10161 df-fzo 10295 df-seqfrec 10625 df-exp 10716 df-fac 10903 df-bc 10925 df-ihash 10953 df-shft 11211 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-clim 11675 df-sumdc 11750 df-ef 12044 df-sin 12046 df-cos 12047 df-pi 12049 df-rest 13158 df-topgen 13177 df-psmet 14390 df-xmet 14391 df-met 14392 df-bl 14393 df-mopn 14394 df-top 14555 df-topon 14568 df-bases 14600 df-ntr 14653 df-cn 14745 df-cnp 14746 df-tx 14810 df-cncf 15128 df-limced 15213 df-dvap 15214 |
| This theorem is referenced by: coseq0q4123 15391 |
| Copyright terms: Public domain | W3C validator |