ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosq14gt0 GIF version

Theorem cosq14gt0 14256
Description: The cosine of a number strictly between -Ο€ / 2 and Ο€ / 2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
cosq14gt0 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ 0 < (cosβ€˜π΄))

Proof of Theorem cosq14gt0
StepHypRef Expression
1 halfpire 14216 . . . . 5 (Ο€ / 2) ∈ ℝ
2 elioore 9912 . . . . 5 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ 𝐴 ∈ ℝ)
3 resubcl 8221 . . . . 5 (((Ο€ / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) β†’ ((Ο€ / 2) βˆ’ 𝐴) ∈ ℝ)
41, 2, 3sylancr 414 . . . 4 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ ((Ο€ / 2) βˆ’ 𝐴) ∈ ℝ)
5 neghalfpirx 14218 . . . . . . 7 -(Ο€ / 2) ∈ ℝ*
61rexri 8015 . . . . . . 7 (Ο€ / 2) ∈ ℝ*
7 elioo2 9921 . . . . . . 7 ((-(Ο€ / 2) ∈ ℝ* ∧ (Ο€ / 2) ∈ ℝ*) β†’ (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) ↔ (𝐴 ∈ ℝ ∧ -(Ο€ / 2) < 𝐴 ∧ 𝐴 < (Ο€ / 2))))
85, 6, 7mp2an 426 . . . . . 6 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) ↔ (𝐴 ∈ ℝ ∧ -(Ο€ / 2) < 𝐴 ∧ 𝐴 < (Ο€ / 2)))
98simp3bi 1014 . . . . 5 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ 𝐴 < (Ο€ / 2))
10 posdif 8412 . . . . . 6 ((𝐴 ∈ ℝ ∧ (Ο€ / 2) ∈ ℝ) β†’ (𝐴 < (Ο€ / 2) ↔ 0 < ((Ο€ / 2) βˆ’ 𝐴)))
112, 1, 10sylancl 413 . . . . 5 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ (𝐴 < (Ο€ / 2) ↔ 0 < ((Ο€ / 2) βˆ’ 𝐴)))
129, 11mpbid 147 . . . 4 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ 0 < ((Ο€ / 2) βˆ’ 𝐴))
13 picn 14211 . . . . . . . 8 Ο€ ∈ β„‚
14 halfcl 9145 . . . . . . . 8 (Ο€ ∈ β„‚ β†’ (Ο€ / 2) ∈ β„‚)
1513, 14ax-mp 5 . . . . . . 7 (Ο€ / 2) ∈ β„‚
1615negcli 8225 . . . . . . 7 -(Ο€ / 2) ∈ β„‚
1713, 15negsubi 8235 . . . . . . . 8 (Ο€ + -(Ο€ / 2)) = (Ο€ βˆ’ (Ο€ / 2))
18 pidiv2halves 14219 . . . . . . . . 9 ((Ο€ / 2) + (Ο€ / 2)) = Ο€
1913, 15, 15, 18subaddrii 8246 . . . . . . . 8 (Ο€ βˆ’ (Ο€ / 2)) = (Ο€ / 2)
2017, 19eqtri 2198 . . . . . . 7 (Ο€ + -(Ο€ / 2)) = (Ο€ / 2)
2115, 13, 16, 20subaddrii 8246 . . . . . 6 ((Ο€ / 2) βˆ’ Ο€) = -(Ο€ / 2)
228simp2bi 1013 . . . . . 6 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ -(Ο€ / 2) < 𝐴)
2321, 22eqbrtrid 4039 . . . . 5 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ ((Ο€ / 2) βˆ’ Ο€) < 𝐴)
24 pire 14210 . . . . . . 7 Ο€ ∈ ℝ
25 ltsub23 8399 . . . . . . 7 (((Ο€ / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ Ο€ ∈ ℝ) β†’ (((Ο€ / 2) βˆ’ 𝐴) < Ο€ ↔ ((Ο€ / 2) βˆ’ Ο€) < 𝐴))
261, 24, 25mp3an13 1328 . . . . . 6 (𝐴 ∈ ℝ β†’ (((Ο€ / 2) βˆ’ 𝐴) < Ο€ ↔ ((Ο€ / 2) βˆ’ Ο€) < 𝐴))
272, 26syl 14 . . . . 5 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ (((Ο€ / 2) βˆ’ 𝐴) < Ο€ ↔ ((Ο€ / 2) βˆ’ Ο€) < 𝐴))
2823, 27mpbird 167 . . . 4 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ ((Ο€ / 2) βˆ’ 𝐴) < Ο€)
29 0xr 8004 . . . . 5 0 ∈ ℝ*
3024rexri 8015 . . . . 5 Ο€ ∈ ℝ*
31 elioo2 9921 . . . . 5 ((0 ∈ ℝ* ∧ Ο€ ∈ ℝ*) β†’ (((Ο€ / 2) βˆ’ 𝐴) ∈ (0(,)Ο€) ↔ (((Ο€ / 2) βˆ’ 𝐴) ∈ ℝ ∧ 0 < ((Ο€ / 2) βˆ’ 𝐴) ∧ ((Ο€ / 2) βˆ’ 𝐴) < Ο€)))
3229, 30, 31mp2an 426 . . . 4 (((Ο€ / 2) βˆ’ 𝐴) ∈ (0(,)Ο€) ↔ (((Ο€ / 2) βˆ’ 𝐴) ∈ ℝ ∧ 0 < ((Ο€ / 2) βˆ’ 𝐴) ∧ ((Ο€ / 2) βˆ’ 𝐴) < Ο€))
334, 12, 28, 32syl3anbrc 1181 . . 3 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ ((Ο€ / 2) βˆ’ 𝐴) ∈ (0(,)Ο€))
34 sinq12gt0 14254 . . 3 (((Ο€ / 2) βˆ’ 𝐴) ∈ (0(,)Ο€) β†’ 0 < (sinβ€˜((Ο€ / 2) βˆ’ 𝐴)))
3533, 34syl 14 . 2 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ 0 < (sinβ€˜((Ο€ / 2) βˆ’ 𝐴)))
362recnd 7986 . . 3 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ 𝐴 ∈ β„‚)
37 sinhalfpim 14245 . . 3 (𝐴 ∈ β„‚ β†’ (sinβ€˜((Ο€ / 2) βˆ’ 𝐴)) = (cosβ€˜π΄))
3836, 37syl 14 . 2 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ (sinβ€˜((Ο€ / 2) βˆ’ 𝐴)) = (cosβ€˜π΄))
3935, 38breqtrd 4030 1 (𝐴 ∈ (-(Ο€ / 2)(,)(Ο€ / 2)) β†’ 0 < (cosβ€˜π΄))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148   class class class wbr 4004  β€˜cfv 5217  (class class class)co 5875  β„‚cc 7809  β„cr 7810  0cc0 7811   + caddc 7814  β„*cxr 7991   < clt 7992   βˆ’ cmin 8128  -cneg 8129   / cdiv 8629  2c2 8970  (,)cioo 9888  sincsin 11652  cosccos 11653  Ο€cpi 11655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931  ax-pre-suploc 7932  ax-addf 7933  ax-mulf 7934
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-disj 3982  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-of 6083  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-map 6650  df-pm 6651  df-en 6741  df-dom 6742  df-fin 6743  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-7 8983  df-8 8984  df-9 8985  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-xneg 9772  df-xadd 9773  df-ioo 9892  df-ioc 9893  df-ico 9894  df-icc 9895  df-fz 10009  df-fzo 10143  df-seqfrec 10446  df-exp 10520  df-fac 10706  df-bc 10728  df-ihash 10756  df-shft 10824  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-sumdc 11362  df-ef 11656  df-sin 11658  df-cos 11659  df-pi 11661  df-rest 12690  df-topgen 12709  df-psmet 13450  df-xmet 13451  df-met 13452  df-bl 13453  df-mopn 13454  df-top 13501  df-topon 13514  df-bases 13546  df-ntr 13599  df-cn 13691  df-cnp 13692  df-tx 13756  df-cncf 14061  df-limced 14128  df-dvap 14129
This theorem is referenced by:  coseq0q4123  14258
  Copyright terms: Public domain W3C validator