![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cosq14gt0 | GIF version |
Description: The cosine of a number strictly between -Ο / 2 and Ο / 2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.) |
Ref | Expression |
---|---|
cosq14gt0 | β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β 0 < (cosβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfpire 14216 | . . . . 5 β’ (Ο / 2) β β | |
2 | elioore 9912 | . . . . 5 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β π΄ β β) | |
3 | resubcl 8221 | . . . . 5 β’ (((Ο / 2) β β β§ π΄ β β) β ((Ο / 2) β π΄) β β) | |
4 | 1, 2, 3 | sylancr 414 | . . . 4 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β ((Ο / 2) β π΄) β β) |
5 | neghalfpirx 14218 | . . . . . . 7 β’ -(Ο / 2) β β* | |
6 | 1 | rexri 8015 | . . . . . . 7 β’ (Ο / 2) β β* |
7 | elioo2 9921 | . . . . . . 7 β’ ((-(Ο / 2) β β* β§ (Ο / 2) β β*) β (π΄ β (-(Ο / 2)(,)(Ο / 2)) β (π΄ β β β§ -(Ο / 2) < π΄ β§ π΄ < (Ο / 2)))) | |
8 | 5, 6, 7 | mp2an 426 | . . . . . 6 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β (π΄ β β β§ -(Ο / 2) < π΄ β§ π΄ < (Ο / 2))) |
9 | 8 | simp3bi 1014 | . . . . 5 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β π΄ < (Ο / 2)) |
10 | posdif 8412 | . . . . . 6 β’ ((π΄ β β β§ (Ο / 2) β β) β (π΄ < (Ο / 2) β 0 < ((Ο / 2) β π΄))) | |
11 | 2, 1, 10 | sylancl 413 | . . . . 5 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β (π΄ < (Ο / 2) β 0 < ((Ο / 2) β π΄))) |
12 | 9, 11 | mpbid 147 | . . . 4 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β 0 < ((Ο / 2) β π΄)) |
13 | picn 14211 | . . . . . . . 8 β’ Ο β β | |
14 | halfcl 9145 | . . . . . . . 8 β’ (Ο β β β (Ο / 2) β β) | |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 β’ (Ο / 2) β β |
16 | 15 | negcli 8225 | . . . . . . 7 β’ -(Ο / 2) β β |
17 | 13, 15 | negsubi 8235 | . . . . . . . 8 β’ (Ο + -(Ο / 2)) = (Ο β (Ο / 2)) |
18 | pidiv2halves 14219 | . . . . . . . . 9 β’ ((Ο / 2) + (Ο / 2)) = Ο | |
19 | 13, 15, 15, 18 | subaddrii 8246 | . . . . . . . 8 β’ (Ο β (Ο / 2)) = (Ο / 2) |
20 | 17, 19 | eqtri 2198 | . . . . . . 7 β’ (Ο + -(Ο / 2)) = (Ο / 2) |
21 | 15, 13, 16, 20 | subaddrii 8246 | . . . . . 6 β’ ((Ο / 2) β Ο) = -(Ο / 2) |
22 | 8 | simp2bi 1013 | . . . . . 6 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β -(Ο / 2) < π΄) |
23 | 21, 22 | eqbrtrid 4039 | . . . . 5 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β ((Ο / 2) β Ο) < π΄) |
24 | pire 14210 | . . . . . . 7 β’ Ο β β | |
25 | ltsub23 8399 | . . . . . . 7 β’ (((Ο / 2) β β β§ π΄ β β β§ Ο β β) β (((Ο / 2) β π΄) < Ο β ((Ο / 2) β Ο) < π΄)) | |
26 | 1, 24, 25 | mp3an13 1328 | . . . . . 6 β’ (π΄ β β β (((Ο / 2) β π΄) < Ο β ((Ο / 2) β Ο) < π΄)) |
27 | 2, 26 | syl 14 | . . . . 5 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β (((Ο / 2) β π΄) < Ο β ((Ο / 2) β Ο) < π΄)) |
28 | 23, 27 | mpbird 167 | . . . 4 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β ((Ο / 2) β π΄) < Ο) |
29 | 0xr 8004 | . . . . 5 β’ 0 β β* | |
30 | 24 | rexri 8015 | . . . . 5 β’ Ο β β* |
31 | elioo2 9921 | . . . . 5 β’ ((0 β β* β§ Ο β β*) β (((Ο / 2) β π΄) β (0(,)Ο) β (((Ο / 2) β π΄) β β β§ 0 < ((Ο / 2) β π΄) β§ ((Ο / 2) β π΄) < Ο))) | |
32 | 29, 30, 31 | mp2an 426 | . . . 4 β’ (((Ο / 2) β π΄) β (0(,)Ο) β (((Ο / 2) β π΄) β β β§ 0 < ((Ο / 2) β π΄) β§ ((Ο / 2) β π΄) < Ο)) |
33 | 4, 12, 28, 32 | syl3anbrc 1181 | . . 3 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β ((Ο / 2) β π΄) β (0(,)Ο)) |
34 | sinq12gt0 14254 | . . 3 β’ (((Ο / 2) β π΄) β (0(,)Ο) β 0 < (sinβ((Ο / 2) β π΄))) | |
35 | 33, 34 | syl 14 | . 2 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β 0 < (sinβ((Ο / 2) β π΄))) |
36 | 2 | recnd 7986 | . . 3 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β π΄ β β) |
37 | sinhalfpim 14245 | . . 3 β’ (π΄ β β β (sinβ((Ο / 2) β π΄)) = (cosβπ΄)) | |
38 | 36, 37 | syl 14 | . 2 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β (sinβ((Ο / 2) β π΄)) = (cosβπ΄)) |
39 | 35, 38 | breqtrd 4030 | 1 β’ (π΄ β (-(Ο / 2)(,)(Ο / 2)) β 0 < (cosβπ΄)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β wb 105 β§ w3a 978 = wceq 1353 β wcel 2148 class class class wbr 4004 βcfv 5217 (class class class)co 5875 βcc 7809 βcr 7810 0cc0 7811 + caddc 7814 β*cxr 7991 < clt 7992 β cmin 8128 -cneg 8129 / cdiv 8629 2c2 8970 (,)cioo 9888 sincsin 11652 cosccos 11653 Οcpi 11655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulrcl 7910 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-precex 7921 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 ax-pre-mulgt0 7928 ax-pre-mulext 7929 ax-arch 7930 ax-caucvg 7931 ax-pre-suploc 7932 ax-addf 7933 ax-mulf 7934 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-if 3536 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-disj 3982 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-po 4297 df-iso 4298 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-isom 5226 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-of 6083 df-1st 6141 df-2nd 6142 df-recs 6306 df-irdg 6371 df-frec 6392 df-1o 6417 df-oadd 6421 df-er 6535 df-map 6650 df-pm 6651 df-en 6741 df-dom 6742 df-fin 6743 df-sup 6983 df-inf 6984 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-reap 8532 df-ap 8539 df-div 8630 df-inn 8920 df-2 8978 df-3 8979 df-4 8980 df-5 8981 df-6 8982 df-7 8983 df-8 8984 df-9 8985 df-n0 9177 df-z 9254 df-uz 9529 df-q 9620 df-rp 9654 df-xneg 9772 df-xadd 9773 df-ioo 9892 df-ioc 9893 df-ico 9894 df-icc 9895 df-fz 10009 df-fzo 10143 df-seqfrec 10446 df-exp 10520 df-fac 10706 df-bc 10728 df-ihash 10756 df-shft 10824 df-cj 10851 df-re 10852 df-im 10853 df-rsqrt 11007 df-abs 11008 df-clim 11287 df-sumdc 11362 df-ef 11656 df-sin 11658 df-cos 11659 df-pi 11661 df-rest 12690 df-topgen 12709 df-psmet 13450 df-xmet 13451 df-met 13452 df-bl 13453 df-mopn 13454 df-top 13501 df-topon 13514 df-bases 13546 df-ntr 13599 df-cn 13691 df-cnp 13692 df-tx 13756 df-cncf 14061 df-limced 14128 df-dvap 14129 |
This theorem is referenced by: coseq0q4123 14258 |
Copyright terms: Public domain | W3C validator |