ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds0 GIF version

Theorem dvds0 12325
Description: Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds0 (𝑁 ∈ ℤ → 𝑁 ∥ 0)

Proof of Theorem dvds0
StepHypRef Expression
1 zcn 9459 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
21mul02d 8546 . 2 (𝑁 ∈ ℤ → (0 · 𝑁) = 0)
3 0z 9465 . . 3 0 ∈ ℤ
4 dvds0lem 12320 . . . 4 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 · 𝑁) = 0) → 𝑁 ∥ 0)
54ex 115 . . 3 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → ((0 · 𝑁) = 0 → 𝑁 ∥ 0))
63, 3, 5mp3an13 1362 . 2 (𝑁 ∈ ℤ → ((0 · 𝑁) = 0 → 𝑁 ∥ 0))
72, 6mpd 13 1 (𝑁 ∈ ℤ → 𝑁 ∥ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4083  (class class class)co 6007  0cc0 8007   · cmul 8012  cz 9454  cdvds 12306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-sub 8327  df-neg 8328  df-z 9455  df-dvds 12307
This theorem is referenced by:  0dvds  12330  fsumdvds  12361  alzdvds  12373  fzo0dvdseq  12376  z0even  12430  gcddvds  12492  gcd0id  12508  bezoutlemmain  12527  dfgcd3  12539  dfgcd2  12543  dvdssq  12560  dvdslcm  12599  lcmdvds  12609  mulgcddvds  12624  odzdvds  12776  pcdvdsb  12851  pcz  12863  lgsne0  15725
  Copyright terms: Public domain W3C validator