![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvds0 | GIF version |
Description: Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds0 | ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 9288 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | 1 | mul02d 8379 | . 2 ⊢ (𝑁 ∈ ℤ → (0 · 𝑁) = 0) |
3 | 0z 9294 | . . 3 ⊢ 0 ∈ ℤ | |
4 | dvds0lem 11840 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 · 𝑁) = 0) → 𝑁 ∥ 0) | |
5 | 4 | ex 115 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → ((0 · 𝑁) = 0 → 𝑁 ∥ 0)) |
6 | 3, 3, 5 | mp3an13 1339 | . 2 ⊢ (𝑁 ∈ ℤ → ((0 · 𝑁) = 0 → 𝑁 ∥ 0)) |
7 | 2, 6 | mpd 13 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 (class class class)co 5896 0cc0 7841 · cmul 7846 ℤcz 9283 ∥ cdvds 11826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-setind 4554 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-addcom 7941 ax-mulcom 7942 ax-addass 7943 ax-distr 7945 ax-i2m1 7946 ax-0id 7949 ax-rnegex 7950 ax-cnre 7952 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-sub 8160 df-neg 8161 df-z 9284 df-dvds 11827 |
This theorem is referenced by: 0dvds 11850 alzdvds 11892 fzo0dvdseq 11895 z0even 11948 gcddvds 11996 gcd0id 12012 bezoutlemmain 12031 dfgcd3 12043 dfgcd2 12047 dvdssq 12064 dvdslcm 12101 lcmdvds 12111 mulgcddvds 12126 odzdvds 12277 pcdvdsb 12352 pcz 12364 lgsne0 14900 |
Copyright terms: Public domain | W3C validator |