| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvds0 | GIF version | ||
| Description: Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvds0 | ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9350 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1 | mul02d 8437 | . 2 ⊢ (𝑁 ∈ ℤ → (0 · 𝑁) = 0) |
| 3 | 0z 9356 | . . 3 ⊢ 0 ∈ ℤ | |
| 4 | dvds0lem 11985 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 · 𝑁) = 0) → 𝑁 ∥ 0) | |
| 5 | 4 | ex 115 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → ((0 · 𝑁) = 0 → 𝑁 ∥ 0)) |
| 6 | 3, 3, 5 | mp3an13 1339 | . 2 ⊢ (𝑁 ∈ ℤ → ((0 · 𝑁) = 0 → 𝑁 ∥ 0)) |
| 7 | 2, 6 | mpd 13 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 0cc0 7898 · cmul 7903 ℤcz 9345 ∥ cdvds 11971 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8218 df-neg 8219 df-z 9346 df-dvds 11972 |
| This theorem is referenced by: 0dvds 11995 fsumdvds 12026 alzdvds 12038 fzo0dvdseq 12041 z0even 12095 gcddvds 12157 gcd0id 12173 bezoutlemmain 12192 dfgcd3 12204 dfgcd2 12208 dvdssq 12225 dvdslcm 12264 lcmdvds 12274 mulgcddvds 12289 odzdvds 12441 pcdvdsb 12516 pcz 12528 lgsne0 15365 |
| Copyright terms: Public domain | W3C validator |