ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bernneq2 GIF version

Theorem bernneq2 10660
Description: Variation of Bernoulli's inequality bernneq 10659. (Contributed by NM, 18-Oct-2007.)
Assertion
Ref Expression
bernneq2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑁) + 1) ≤ (𝐴𝑁))

Proof of Theorem bernneq2
StepHypRef Expression
1 peano2rem 8242 . . . 4 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
213ad2ant1 1020 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (𝐴 − 1) ∈ ℝ)
3 simp2 1000 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 𝑁 ∈ ℕ0)
4 df-neg 8149 . . . . 5 -1 = (0 − 1)
5 0re 7975 . . . . . . 7 0 ∈ ℝ
6 1re 7974 . . . . . . 7 1 ∈ ℝ
7 lesub1 8431 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 − 1) ≤ (𝐴 − 1)))
85, 6, 7mp3an13 1339 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 − 1) ≤ (𝐴 − 1)))
98biimpa 296 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 − 1) ≤ (𝐴 − 1))
104, 9eqbrtrid 4053 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -1 ≤ (𝐴 − 1))
11103adant2 1018 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → -1 ≤ (𝐴 − 1))
12 bernneq 10659 . . 3 (((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ (𝐴 − 1)) → (1 + ((𝐴 − 1) · 𝑁)) ≤ ((1 + (𝐴 − 1))↑𝑁))
132, 3, 11, 12syl3anc 1249 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (1 + ((𝐴 − 1) · 𝑁)) ≤ ((1 + (𝐴 − 1))↑𝑁))
14 ax-1cn 7922 . . . 4 1 ∈ ℂ
151recnd 8004 . . . . 5 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℂ)
16 nn0cn 9204 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
17 mulcl 7956 . . . . 5 (((𝐴 − 1) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐴 − 1) · 𝑁) ∈ ℂ)
1815, 16, 17syl2an 289 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((𝐴 − 1) · 𝑁) ∈ ℂ)
19 addcom 8112 . . . 4 ((1 ∈ ℂ ∧ ((𝐴 − 1) · 𝑁) ∈ ℂ) → (1 + ((𝐴 − 1) · 𝑁)) = (((𝐴 − 1) · 𝑁) + 1))
2014, 18, 19sylancr 414 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (1 + ((𝐴 − 1) · 𝑁)) = (((𝐴 − 1) · 𝑁) + 1))
21203adant3 1019 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (1 + ((𝐴 − 1) · 𝑁)) = (((𝐴 − 1) · 𝑁) + 1))
22 recn 7962 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
23 pncan3 8183 . . . . 5 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + (𝐴 − 1)) = 𝐴)
2414, 22, 23sylancr 414 . . . 4 (𝐴 ∈ ℝ → (1 + (𝐴 − 1)) = 𝐴)
2524oveq1d 5906 . . 3 (𝐴 ∈ ℝ → ((1 + (𝐴 − 1))↑𝑁) = (𝐴𝑁))
26253ad2ant1 1020 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → ((1 + (𝐴 − 1))↑𝑁) = (𝐴𝑁))
2713, 21, 263brtr3d 4049 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑁) + 1) ≤ (𝐴𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160   class class class wbr 4018  (class class class)co 5891  cc 7827  cr 7828  0cc0 7829  1c1 7830   + caddc 7832   · cmul 7834  cle 8011  cmin 8146  -cneg 8147  0cn0 9194  cexp 10537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-frec 6410  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-n0 9195  df-z 9272  df-uz 9547  df-seqfrec 10464  df-exp 10538
This theorem is referenced by:  bernneq3  10661  expnbnd  10662  expcnvap0  11528  cvgratnnlembern  11549
  Copyright terms: Public domain W3C validator