![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bernneq2 | GIF version |
Description: Variation of Bernoulli's inequality bernneq 10734. (Contributed by NM, 18-Oct-2007.) |
Ref | Expression |
---|---|
bernneq2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑁) + 1) ≤ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2rem 8288 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ) | |
2 | 1 | 3ad2ant1 1020 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (𝐴 − 1) ∈ ℝ) |
3 | simp2 1000 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 𝑁 ∈ ℕ0) | |
4 | df-neg 8195 | . . . . 5 ⊢ -1 = (0 − 1) | |
5 | 0re 8021 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
6 | 1re 8020 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
7 | lesub1 8477 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 − 1) ≤ (𝐴 − 1))) | |
8 | 5, 6, 7 | mp3an13 1339 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 − 1) ≤ (𝐴 − 1))) |
9 | 8 | biimpa 296 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 − 1) ≤ (𝐴 − 1)) |
10 | 4, 9 | eqbrtrid 4065 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -1 ≤ (𝐴 − 1)) |
11 | 10 | 3adant2 1018 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → -1 ≤ (𝐴 − 1)) |
12 | bernneq 10734 | . . 3 ⊢ (((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ (𝐴 − 1)) → (1 + ((𝐴 − 1) · 𝑁)) ≤ ((1 + (𝐴 − 1))↑𝑁)) | |
13 | 2, 3, 11, 12 | syl3anc 1249 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (1 + ((𝐴 − 1) · 𝑁)) ≤ ((1 + (𝐴 − 1))↑𝑁)) |
14 | ax-1cn 7967 | . . . 4 ⊢ 1 ∈ ℂ | |
15 | 1 | recnd 8050 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℂ) |
16 | nn0cn 9253 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
17 | mulcl 8001 | . . . . 5 ⊢ (((𝐴 − 1) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐴 − 1) · 𝑁) ∈ ℂ) | |
18 | 15, 16, 17 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((𝐴 − 1) · 𝑁) ∈ ℂ) |
19 | addcom 8158 | . . . 4 ⊢ ((1 ∈ ℂ ∧ ((𝐴 − 1) · 𝑁) ∈ ℂ) → (1 + ((𝐴 − 1) · 𝑁)) = (((𝐴 − 1) · 𝑁) + 1)) | |
20 | 14, 18, 19 | sylancr 414 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (1 + ((𝐴 − 1) · 𝑁)) = (((𝐴 − 1) · 𝑁) + 1)) |
21 | 20 | 3adant3 1019 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (1 + ((𝐴 − 1) · 𝑁)) = (((𝐴 − 1) · 𝑁) + 1)) |
22 | recn 8007 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
23 | pncan3 8229 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + (𝐴 − 1)) = 𝐴) | |
24 | 14, 22, 23 | sylancr 414 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1 + (𝐴 − 1)) = 𝐴) |
25 | 24 | oveq1d 5934 | . . 3 ⊢ (𝐴 ∈ ℝ → ((1 + (𝐴 − 1))↑𝑁) = (𝐴↑𝑁)) |
26 | 25 | 3ad2ant1 1020 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → ((1 + (𝐴 − 1))↑𝑁) = (𝐴↑𝑁)) |
27 | 13, 21, 26 | 3brtr3d 4061 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑁) + 1) ≤ (𝐴↑𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 ℝcr 7873 0cc0 7874 1c1 7875 + caddc 7877 · cmul 7879 ≤ cle 8057 − cmin 8192 -cneg 8193 ℕ0cn0 9243 ↑cexp 10612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-seqfrec 10522 df-exp 10613 |
This theorem is referenced by: bernneq3 10736 expnbnd 10737 expcnvap0 11648 cvgratnnlembern 11669 |
Copyright terms: Public domain | W3C validator |