| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bernneq2 | GIF version | ||
| Description: Variation of Bernoulli's inequality bernneq 10786. (Contributed by NM, 18-Oct-2007.) |
| Ref | Expression |
|---|---|
| bernneq2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑁) + 1) ≤ (𝐴↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2rem 8321 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ) | |
| 2 | 1 | 3ad2ant1 1020 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (𝐴 − 1) ∈ ℝ) |
| 3 | simp2 1000 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 𝑁 ∈ ℕ0) | |
| 4 | df-neg 8228 | . . . . 5 ⊢ -1 = (0 − 1) | |
| 5 | 0re 8054 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 6 | 1re 8053 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 7 | lesub1 8511 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 − 1) ≤ (𝐴 − 1))) | |
| 8 | 5, 6, 7 | mp3an13 1340 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 − 1) ≤ (𝐴 − 1))) |
| 9 | 8 | biimpa 296 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 − 1) ≤ (𝐴 − 1)) |
| 10 | 4, 9 | eqbrtrid 4078 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -1 ≤ (𝐴 − 1)) |
| 11 | 10 | 3adant2 1018 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → -1 ≤ (𝐴 − 1)) |
| 12 | bernneq 10786 | . . 3 ⊢ (((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ (𝐴 − 1)) → (1 + ((𝐴 − 1) · 𝑁)) ≤ ((1 + (𝐴 − 1))↑𝑁)) | |
| 13 | 2, 3, 11, 12 | syl3anc 1249 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (1 + ((𝐴 − 1) · 𝑁)) ≤ ((1 + (𝐴 − 1))↑𝑁)) |
| 14 | ax-1cn 8000 | . . . 4 ⊢ 1 ∈ ℂ | |
| 15 | 1 | recnd 8083 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℂ) |
| 16 | nn0cn 9287 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 17 | mulcl 8034 | . . . . 5 ⊢ (((𝐴 − 1) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐴 − 1) · 𝑁) ∈ ℂ) | |
| 18 | 15, 16, 17 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((𝐴 − 1) · 𝑁) ∈ ℂ) |
| 19 | addcom 8191 | . . . 4 ⊢ ((1 ∈ ℂ ∧ ((𝐴 − 1) · 𝑁) ∈ ℂ) → (1 + ((𝐴 − 1) · 𝑁)) = (((𝐴 − 1) · 𝑁) + 1)) | |
| 20 | 14, 18, 19 | sylancr 414 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (1 + ((𝐴 − 1) · 𝑁)) = (((𝐴 − 1) · 𝑁) + 1)) |
| 21 | 20 | 3adant3 1019 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (1 + ((𝐴 − 1) · 𝑁)) = (((𝐴 − 1) · 𝑁) + 1)) |
| 22 | recn 8040 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 23 | pncan3 8262 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + (𝐴 − 1)) = 𝐴) | |
| 24 | 14, 22, 23 | sylancr 414 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1 + (𝐴 − 1)) = 𝐴) |
| 25 | 24 | oveq1d 5949 | . . 3 ⊢ (𝐴 ∈ ℝ → ((1 + (𝐴 − 1))↑𝑁) = (𝐴↑𝑁)) |
| 26 | 25 | 3ad2ant1 1020 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → ((1 + (𝐴 − 1))↑𝑁) = (𝐴↑𝑁)) |
| 27 | 13, 21, 26 | 3brtr3d 4074 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑁) + 1) ≤ (𝐴↑𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5934 ℂcc 7905 ℝcr 7906 0cc0 7907 1c1 7908 + caddc 7910 · cmul 7912 ≤ cle 8090 − cmin 8225 -cneg 8226 ℕ0cn0 9277 ↑cexp 10664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-n0 9278 df-z 9355 df-uz 9631 df-seqfrec 10574 df-exp 10665 |
| This theorem is referenced by: bernneq3 10788 expnbnd 10789 expcnvap0 11732 cvgratnnlembern 11753 |
| Copyright terms: Public domain | W3C validator |