Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fz01en | GIF version |
Description: 0-based and 1-based finite sets of sequential integers are equinumerous. (Contributed by Paul Chapman, 11-Apr-2009.) |
Ref | Expression |
---|---|
fz01en | ⊢ (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2zm 9229 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
2 | 0z 9202 | . . . 4 ⊢ 0 ∈ ℤ | |
3 | 1z 9217 | . . . 4 ⊢ 1 ∈ ℤ | |
4 | fzen 9978 | . . . 4 ⊢ ((0 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 1 ∈ ℤ) → (0...(𝑁 − 1)) ≈ ((0 + 1)...((𝑁 − 1) + 1))) | |
5 | 2, 3, 4 | mp3an13 1318 | . . 3 ⊢ ((𝑁 − 1) ∈ ℤ → (0...(𝑁 − 1)) ≈ ((0 + 1)...((𝑁 − 1) + 1))) |
6 | 1, 5 | syl 14 | . 2 ⊢ (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ ((0 + 1)...((𝑁 − 1) + 1))) |
7 | 0p1e1 8971 | . . . 4 ⊢ (0 + 1) = 1 | |
8 | 7 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℤ → (0 + 1) = 1) |
9 | zcn 9196 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
10 | ax-1cn 7846 | . . . 4 ⊢ 1 ∈ ℂ | |
11 | npcan 8107 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
12 | 9, 10, 11 | sylancl 410 | . . 3 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁) |
13 | 8, 12 | oveq12d 5860 | . 2 ⊢ (𝑁 ∈ ℤ → ((0 + 1)...((𝑁 − 1) + 1)) = (1...𝑁)) |
14 | 6, 13 | breqtrd 4008 | 1 ⊢ (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 ≈ cen 6704 ℂcc 7751 0cc0 7753 1c1 7754 + caddc 7756 − cmin 8069 ℤcz 9191 ...cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-en 6707 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-fz 9945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |