ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz01en GIF version

Theorem fz01en 9436
Description: 0-based and 1-based finite sets of sequential integers are equinumerous. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
fz01en (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁))

Proof of Theorem fz01en
StepHypRef Expression
1 peano2zm 8758 . . 3 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2 0z 8731 . . . 4 0 ∈ ℤ
3 1z 8746 . . . 4 1 ∈ ℤ
4 fzen 9426 . . . 4 ((0 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 1 ∈ ℤ) → (0...(𝑁 − 1)) ≈ ((0 + 1)...((𝑁 − 1) + 1)))
52, 3, 4mp3an13 1264 . . 3 ((𝑁 − 1) ∈ ℤ → (0...(𝑁 − 1)) ≈ ((0 + 1)...((𝑁 − 1) + 1)))
61, 5syl 14 . 2 (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ ((0 + 1)...((𝑁 − 1) + 1)))
7 0p1e1 8507 . . . 4 (0 + 1) = 1
87a1i 9 . . 3 (𝑁 ∈ ℤ → (0 + 1) = 1)
9 zcn 8725 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
10 ax-1cn 7417 . . . 4 1 ∈ ℂ
11 npcan 7670 . . . 4 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
129, 10, 11sylancl 404 . . 3 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
138, 12oveq12d 5652 . 2 (𝑁 ∈ ℤ → ((0 + 1)...((𝑁 − 1) + 1)) = (1...𝑁))
146, 13breqtrd 3861 1 (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1289  wcel 1438   class class class wbr 3837  (class class class)co 5634  cen 6435  cc 7327  0cc0 7329  1c1 7330   + caddc 7332  cmin 7632  cz 8720  ...cfz 9393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-en 6438  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721  df-fz 9394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator