Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fz01en | GIF version |
Description: 0-based and 1-based finite sets of sequential integers are equinumerous. (Contributed by Paul Chapman, 11-Apr-2009.) |
Ref | Expression |
---|---|
fz01en | ⊢ (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2zm 9221 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
2 | 0z 9194 | . . . 4 ⊢ 0 ∈ ℤ | |
3 | 1z 9209 | . . . 4 ⊢ 1 ∈ ℤ | |
4 | fzen 9969 | . . . 4 ⊢ ((0 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 1 ∈ ℤ) → (0...(𝑁 − 1)) ≈ ((0 + 1)...((𝑁 − 1) + 1))) | |
5 | 2, 3, 4 | mp3an13 1317 | . . 3 ⊢ ((𝑁 − 1) ∈ ℤ → (0...(𝑁 − 1)) ≈ ((0 + 1)...((𝑁 − 1) + 1))) |
6 | 1, 5 | syl 14 | . 2 ⊢ (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ ((0 + 1)...((𝑁 − 1) + 1))) |
7 | 0p1e1 8963 | . . . 4 ⊢ (0 + 1) = 1 | |
8 | 7 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℤ → (0 + 1) = 1) |
9 | zcn 9188 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
10 | ax-1cn 7838 | . . . 4 ⊢ 1 ∈ ℂ | |
11 | npcan 8099 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
12 | 9, 10, 11 | sylancl 410 | . . 3 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁) |
13 | 8, 12 | oveq12d 5855 | . 2 ⊢ (𝑁 ∈ ℤ → ((0 + 1)...((𝑁 − 1) + 1)) = (1...𝑁)) |
14 | 6, 13 | breqtrd 4003 | 1 ⊢ (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1342 ∈ wcel 2135 class class class wbr 3977 (class class class)co 5837 ≈ cen 6696 ℂcc 7743 0cc0 7745 1c1 7746 + caddc 7748 − cmin 8061 ℤcz 9183 ...cfz 9936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-addcom 7845 ax-addass 7847 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-0id 7853 ax-rnegex 7854 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-ltadd 7861 |
This theorem depends on definitions: df-bi 116 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-iun 3863 df-br 3978 df-opab 4039 df-mpt 4040 df-id 4266 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-fo 5189 df-f1o 5190 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-1st 6101 df-2nd 6102 df-en 6699 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-inn 8850 df-n0 9107 df-z 9184 df-fz 9937 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |