| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en2eleq | GIF version | ||
| Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| en2eleq | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6578 | . . . . . . 7 ⊢ 1o ∈ ω | |
| 2 | simpr 110 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ 2o) | |
| 3 | df-2o 6475 | . . . . . . . 8 ⊢ 2o = suc 1o | |
| 4 | 2, 3 | breqtrdi 4074 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ suc 1o) |
| 5 | simpl 109 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ∈ 𝑃) | |
| 6 | dif1en 6940 | . . . . . . 7 ⊢ ((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑋 ∈ 𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o) | |
| 7 | 1, 4, 5, 6 | mp3an2i 1353 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o) |
| 8 | en1uniel 6863 | . . . . . 6 ⊢ ((𝑃 ∖ {𝑋}) ≈ 1o → ∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋})) | |
| 9 | 7, 8 | syl 14 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋})) |
| 10 | eldifsn 3749 | . . . . 5 ⊢ (∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) ↔ (∪ (𝑃 ∖ {𝑋}) ∈ 𝑃 ∧ ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋)) | |
| 11 | 9, 10 | sylib 122 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (∪ (𝑃 ∖ {𝑋}) ∈ 𝑃 ∧ ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋)) |
| 12 | 11 | simprd 114 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) |
| 13 | 12 | necomd 2453 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ≠ ∪ (𝑃 ∖ {𝑋})) |
| 14 | 11 | simpld 112 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ∈ 𝑃) |
| 15 | en2eqpr 6968 | . . 3 ⊢ ((𝑃 ≈ 2o ∧ 𝑋 ∈ 𝑃 ∧ ∪ (𝑃 ∖ {𝑋}) ∈ 𝑃) → (𝑋 ≠ ∪ (𝑃 ∖ {𝑋}) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})})) | |
| 16 | 2, 5, 14, 15 | syl3anc 1249 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑋 ≠ ∪ (𝑃 ∖ {𝑋}) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})})) |
| 17 | 13, 16 | mpd 13 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∖ cdif 3154 {csn 3622 {cpr 3623 ∪ cuni 3839 class class class wbr 4033 suc csuc 4400 ωcom 4626 1oc1o 6467 2oc2o 6468 ≈ cen 6797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1o 6474 df-2o 6475 df-er 6592 df-en 6800 df-fin 6802 |
| This theorem is referenced by: en2other2 7263 |
| Copyright terms: Public domain | W3C validator |