ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2eleq GIF version

Theorem en2eleq 7369
Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
en2eleq ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})})

Proof of Theorem en2eleq
StepHypRef Expression
1 1onn 6664 . . . . . . 7 1o ∈ ω
2 simpr 110 . . . . . . . 8 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ 2o)
3 df-2o 6561 . . . . . . . 8 2o = suc 1o
42, 3breqtrdi 4123 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ suc 1o)
5 simpl 109 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋𝑃)
6 dif1en 7037 . . . . . . 7 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑋𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o)
71, 4, 5, 6mp3an2i 1376 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o)
8 en1uniel 6954 . . . . . 6 ((𝑃 ∖ {𝑋}) ≈ 1o (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}))
97, 8syl 14 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}))
10 eldifsn 3794 . . . . 5 ( (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) ↔ ( (𝑃 ∖ {𝑋}) ∈ 𝑃 (𝑃 ∖ {𝑋}) ≠ 𝑋))
119, 10sylib 122 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → ( (𝑃 ∖ {𝑋}) ∈ 𝑃 (𝑃 ∖ {𝑋}) ≠ 𝑋))
1211simprd 114 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
1312necomd 2486 . 2 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋 (𝑃 ∖ {𝑋}))
1411simpld 112 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ∈ 𝑃)
15 en2eqpr 7065 . . 3 ((𝑃 ≈ 2o𝑋𝑃 (𝑃 ∖ {𝑋}) ∈ 𝑃) → (𝑋 (𝑃 ∖ {𝑋}) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})}))
162, 5, 14, 15syl3anc 1271 . 2 ((𝑋𝑃𝑃 ≈ 2o) → (𝑋 (𝑃 ∖ {𝑋}) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})}))
1713, 16mpd 13 1 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wne 2400  cdif 3194  {csn 3666  {cpr 3667   cuni 3887   class class class wbr 4082  suc csuc 4455  ωcom 4681  1oc1o 6553  2oc2o 6554  cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-2o 6561  df-er 6678  df-en 6886  df-fin 6888
This theorem is referenced by:  en2other2  7370
  Copyright terms: Public domain W3C validator