![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > en2eleq | GIF version |
Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
en2eleq | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2𝑜) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6277 | . . . . . . 7 ⊢ 1𝑜 ∈ ω | |
2 | simpr 108 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2𝑜) → 𝑃 ≈ 2𝑜) | |
3 | df-2o 6182 | . . . . . . . 8 ⊢ 2𝑜 = suc 1𝑜 | |
4 | 2, 3 | syl6breq 3884 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2𝑜) → 𝑃 ≈ suc 1𝑜) |
5 | simpl 107 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2𝑜) → 𝑋 ∈ 𝑃) | |
6 | dif1en 6593 | . . . . . . 7 ⊢ ((1𝑜 ∈ ω ∧ 𝑃 ≈ suc 1𝑜 ∧ 𝑋 ∈ 𝑃) → (𝑃 ∖ {𝑋}) ≈ 1𝑜) | |
7 | 1, 4, 5, 6 | mp3an2i 1278 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2𝑜) → (𝑃 ∖ {𝑋}) ≈ 1𝑜) |
8 | en1uniel 6519 | . . . . . 6 ⊢ ((𝑃 ∖ {𝑋}) ≈ 1𝑜 → ∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋})) | |
9 | 7, 8 | syl 14 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2𝑜) → ∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋})) |
10 | eldifsn 3567 | . . . . 5 ⊢ (∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) ↔ (∪ (𝑃 ∖ {𝑋}) ∈ 𝑃 ∧ ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋)) | |
11 | 9, 10 | sylib 120 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2𝑜) → (∪ (𝑃 ∖ {𝑋}) ∈ 𝑃 ∧ ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋)) |
12 | 11 | simprd 112 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2𝑜) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) |
13 | 12 | necomd 2341 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2𝑜) → 𝑋 ≠ ∪ (𝑃 ∖ {𝑋})) |
14 | 11 | simpld 110 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2𝑜) → ∪ (𝑃 ∖ {𝑋}) ∈ 𝑃) |
15 | en2eqpr 6621 | . . 3 ⊢ ((𝑃 ≈ 2𝑜 ∧ 𝑋 ∈ 𝑃 ∧ ∪ (𝑃 ∖ {𝑋}) ∈ 𝑃) → (𝑋 ≠ ∪ (𝑃 ∖ {𝑋}) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})})) | |
16 | 2, 5, 14, 15 | syl3anc 1174 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2𝑜) → (𝑋 ≠ ∪ (𝑃 ∖ {𝑋}) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})})) |
17 | 13, 16 | mpd 13 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2𝑜) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ∈ wcel 1438 ≠ wne 2255 ∖ cdif 2996 {csn 3446 {cpr 3447 ∪ cuni 3653 class class class wbr 3845 suc csuc 4192 ωcom 4405 1𝑜c1o 6174 2𝑜c2o 6175 ≈ cen 6453 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3954 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-iinf 4403 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-if 3394 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-tr 3937 df-id 4120 df-iord 4193 df-on 4195 df-suc 4198 df-iom 4406 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-1o 6181 df-2o 6182 df-er 6290 df-en 6456 df-fin 6458 |
This theorem is referenced by: en2other2 6820 |
Copyright terms: Public domain | W3C validator |