| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en2eleq | GIF version | ||
| Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| en2eleq | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6664 | . . . . . . 7 ⊢ 1o ∈ ω | |
| 2 | simpr 110 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ 2o) | |
| 3 | df-2o 6561 | . . . . . . . 8 ⊢ 2o = suc 1o | |
| 4 | 2, 3 | breqtrdi 4123 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ suc 1o) |
| 5 | simpl 109 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ∈ 𝑃) | |
| 6 | dif1en 7037 | . . . . . . 7 ⊢ ((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑋 ∈ 𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o) | |
| 7 | 1, 4, 5, 6 | mp3an2i 1376 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o) |
| 8 | en1uniel 6954 | . . . . . 6 ⊢ ((𝑃 ∖ {𝑋}) ≈ 1o → ∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋})) | |
| 9 | 7, 8 | syl 14 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋})) |
| 10 | eldifsn 3794 | . . . . 5 ⊢ (∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) ↔ (∪ (𝑃 ∖ {𝑋}) ∈ 𝑃 ∧ ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋)) | |
| 11 | 9, 10 | sylib 122 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (∪ (𝑃 ∖ {𝑋}) ∈ 𝑃 ∧ ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋)) |
| 12 | 11 | simprd 114 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) |
| 13 | 12 | necomd 2486 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ≠ ∪ (𝑃 ∖ {𝑋})) |
| 14 | 11 | simpld 112 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ∈ 𝑃) |
| 15 | en2eqpr 7065 | . . 3 ⊢ ((𝑃 ≈ 2o ∧ 𝑋 ∈ 𝑃 ∧ ∪ (𝑃 ∖ {𝑋}) ∈ 𝑃) → (𝑋 ≠ ∪ (𝑃 ∖ {𝑋}) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})})) | |
| 16 | 2, 5, 14, 15 | syl3anc 1271 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑋 ≠ ∪ (𝑃 ∖ {𝑋}) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})})) |
| 17 | 13, 16 | mpd 13 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∖ cdif 3194 {csn 3666 {cpr 3667 ∪ cuni 3887 class class class wbr 4082 suc csuc 4455 ωcom 4681 1oc1o 6553 2oc2o 6554 ≈ cen 6883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1o 6560 df-2o 6561 df-er 6678 df-en 6886 df-fin 6888 |
| This theorem is referenced by: en2other2 7370 |
| Copyright terms: Public domain | W3C validator |