| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > flqltnz | GIF version | ||
| Description: If A is not an integer, then the floor of A is less than A. (Contributed by Jim Kingdon, 9-Oct-2021.) |
| Ref | Expression |
|---|---|
| flqltnz | ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ¬ 𝐴 ∈ ℤ) | |
| 2 | flqidz 10395 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐴 ↔ 𝐴 ∈ ℤ)) | |
| 3 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ((⌊‘𝐴) = 𝐴 ↔ 𝐴 ∈ ℤ)) |
| 4 | 1, 3 | mtbird 674 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ¬ (⌊‘𝐴) = 𝐴) |
| 5 | 4 | neqned 2374 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ≠ 𝐴) |
| 6 | 5 | necomd 2453 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 ≠ (⌊‘𝐴)) |
| 7 | simpl 109 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 ∈ ℚ) | |
| 8 | 7 | flqcld 10386 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ) |
| 9 | zq 9719 | . . . . 5 ⊢ ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ) | |
| 10 | 8, 9 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ∈ ℚ) |
| 11 | qapne 9732 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) ∈ ℚ) → (𝐴 # (⌊‘𝐴) ↔ 𝐴 ≠ (⌊‘𝐴))) | |
| 12 | 10, 11 | syldan 282 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (𝐴 # (⌊‘𝐴) ↔ 𝐴 ≠ (⌊‘𝐴))) |
| 13 | 6, 12 | mpbird 167 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 # (⌊‘𝐴)) |
| 14 | 8 | zred 9467 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ) |
| 15 | qre 9718 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
| 16 | 15 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 ∈ ℝ) |
| 17 | flqlelt 10385 | . . . . 5 ⊢ (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | |
| 18 | 17 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) |
| 19 | 18 | simpld 112 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴) |
| 20 | 14, 16, 19 | leltapd 8685 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ((⌊‘𝐴) < 𝐴 ↔ 𝐴 # (⌊‘𝐴))) |
| 21 | 13, 20 | mpbird 167 | 1 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℝcr 7897 1c1 7899 + caddc 7901 < clt 8080 ≤ cle 8081 # cap 8627 ℤcz 9345 ℚcq 9712 ⌊cfl 10377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-n0 9269 df-z 9346 df-q 9713 df-rp 9748 df-fl 10379 |
| This theorem is referenced by: fldivndvdslt 12121 |
| Copyright terms: Public domain | W3C validator |