| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > flqltnz | GIF version | ||
| Description: If A is not an integer, then the floor of A is less than A. (Contributed by Jim Kingdon, 9-Oct-2021.) |
| Ref | Expression |
|---|---|
| flqltnz | ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ¬ 𝐴 ∈ ℤ) | |
| 2 | flqidz 10451 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐴 ↔ 𝐴 ∈ ℤ)) | |
| 3 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ((⌊‘𝐴) = 𝐴 ↔ 𝐴 ∈ ℤ)) |
| 4 | 1, 3 | mtbird 675 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ¬ (⌊‘𝐴) = 𝐴) |
| 5 | 4 | neqned 2384 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ≠ 𝐴) |
| 6 | 5 | necomd 2463 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 ≠ (⌊‘𝐴)) |
| 7 | simpl 109 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 ∈ ℚ) | |
| 8 | 7 | flqcld 10442 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ) |
| 9 | zq 9767 | . . . . 5 ⊢ ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ) | |
| 10 | 8, 9 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ∈ ℚ) |
| 11 | qapne 9780 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) ∈ ℚ) → (𝐴 # (⌊‘𝐴) ↔ 𝐴 ≠ (⌊‘𝐴))) | |
| 12 | 10, 11 | syldan 282 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (𝐴 # (⌊‘𝐴) ↔ 𝐴 ≠ (⌊‘𝐴))) |
| 13 | 6, 12 | mpbird 167 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 # (⌊‘𝐴)) |
| 14 | 8 | zred 9515 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ) |
| 15 | qre 9766 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
| 16 | 15 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 ∈ ℝ) |
| 17 | flqlelt 10441 | . . . . 5 ⊢ (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | |
| 18 | 17 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) |
| 19 | 18 | simpld 112 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴) |
| 20 | 14, 16, 19 | leltapd 8732 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ((⌊‘𝐴) < 𝐴 ↔ 𝐴 # (⌊‘𝐴))) |
| 21 | 13, 20 | mpbird 167 | 1 ⊢ ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 class class class wbr 4051 ‘cfv 5280 (class class class)co 5957 ℝcr 7944 1c1 7946 + caddc 7948 < clt 8127 ≤ cle 8128 # cap 8674 ℤcz 9392 ℚcq 9760 ⌊cfl 10433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-po 4351 df-iso 4352 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-n0 9316 df-z 9393 df-q 9761 df-rp 9796 df-fl 10435 |
| This theorem is referenced by: fldivndvdslt 12323 |
| Copyright terms: Public domain | W3C validator |