ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqltnz GIF version

Theorem flqltnz 10060
Description: If A is not an integer, then the floor of A is less than A. (Contributed by Jim Kingdon, 9-Oct-2021.)
Assertion
Ref Expression
flqltnz ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴)

Proof of Theorem flqltnz
StepHypRef Expression
1 simpr 109 . . . . . 6 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ¬ 𝐴 ∈ ℤ)
2 flqidz 10059 . . . . . . 7 (𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐴𝐴 ∈ ℤ))
32adantr 274 . . . . . 6 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ((⌊‘𝐴) = 𝐴𝐴 ∈ ℤ))
41, 3mtbird 662 . . . . 5 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ¬ (⌊‘𝐴) = 𝐴)
54neqned 2315 . . . 4 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ≠ 𝐴)
65necomd 2394 . . 3 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 ≠ (⌊‘𝐴))
7 simpl 108 . . . . . 6 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 ∈ ℚ)
87flqcld 10050 . . . . 5 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ)
9 zq 9418 . . . . 5 ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ)
108, 9syl 14 . . . 4 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ∈ ℚ)
11 qapne 9431 . . . 4 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) ∈ ℚ) → (𝐴 # (⌊‘𝐴) ↔ 𝐴 ≠ (⌊‘𝐴)))
1210, 11syldan 280 . . 3 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (𝐴 # (⌊‘𝐴) ↔ 𝐴 ≠ (⌊‘𝐴)))
136, 12mpbird 166 . 2 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 # (⌊‘𝐴))
148zred 9173 . . 3 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ)
15 qre 9417 . . . 4 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
1615adantr 274 . . 3 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → 𝐴 ∈ ℝ)
17 flqlelt 10049 . . . . 5 (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴𝐴 < ((⌊‘𝐴) + 1)))
1817adantr 274 . . . 4 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ((⌊‘𝐴) ≤ 𝐴𝐴 < ((⌊‘𝐴) + 1)))
1918simpld 111 . . 3 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴)
2014, 16, 19leltapd 8401 . 2 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → ((⌊‘𝐴) < 𝐴𝐴 # (⌊‘𝐴)))
2113, 20mpbird 166 1 ((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wne 2308   class class class wbr 3929  cfv 5123  (class class class)co 5774  cr 7619  1c1 7621   + caddc 7623   < clt 7800  cle 7801   # cap 8343  cz 9054  cq 9411  cfl 10041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-q 9412  df-rp 9442  df-fl 10043
This theorem is referenced by:  fldivndvdslt  11632
  Copyright terms: Public domain W3C validator