ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltned GIF version

Theorem ltned 8012
Description: 'Greater than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltned.2 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ltned (𝜑𝐴𝐵)

Proof of Theorem ltned
StepHypRef Expression
1 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ltned.2 . . 3 (𝜑𝐴 < 𝐵)
31, 2gtned 8011 . 2 (𝜑𝐵𝐴)
43necomd 2422 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  wne 2336   class class class wbr 3982  cr 7752   < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-pnf 7935  df-mnf 7936  df-ltxr 7938
This theorem is referenced by:  modsumfzodifsn  10331  nprm  12055  4sqlem10  12317  trilpolemeq1  13919
  Copyright terms: Public domain W3C validator